Abstract 306: Development of EC-DG as a molecular theranostic personalized medicine
癌症研究
体内
化学
细胞凋亡
氨基葡萄糖
医学
药理学
生物
生物化学
生物技术
作者
David J. Yang,R. Ford,Richard Mendez,Yinhan Zhang,Jerry Bryant,Chang‐Sok Oh,Jack Y.J. Huang,Lan Pham,Saady Kohanim,Edmund E. Kim
出处
期刊:Cancer Research [American Association for Cancer Research] 日期:2011-04-01卷期号:71 (8_Supplement): 306-306
标识
DOI:10.1158/1538-7445.am2011-306
摘要
Abstract Purpose: D-glucosamine has been reported to inhibit proliferation of cancer cells in culture and in vivo. We have then synthesized Tc-99m- ethylenedicysteine-glucosamine (EC-DG). We found Tc-99m-EC-DG was involved in cell proliferation in lung, breast and head and neck cultures and could assess breast cancer treatment outcome in vivo by planar scintigraphy. Tc-99m-EC-DG is a safe imaging agent in lung cancer patients. This study was amied to (1) assess a novel response to unlabeled rhenium-EC-DG (Re-EC-DG) involving the translation regulation of hypoxia inducible factor (HIF)-1alpha expression in lymphoma cells, and, (2) evaluate feasibility of using EC-DG for theranostic approaches in cancers. Methods: For theranostic assessment studies, we synthesized cold Re-EC-DG. Re-EC-DG was synthesized via a two-step synthesis. The first step was to synthesize Re-EC by reacting rheniumoxo trichloride with EC. The second step was to react Re-EC with D-glucosamine tetraacetate, followed by de-acetylation. Twelve types of DLBCL cells were incubated with Re-EC-DG at various concentrations (0-10 mM) and TUNEL assays were used to determine cell apoptosis. To ascertain the mechanism of the anticancer properties for Re-EC-DG, DLBCL-LY10 cells were treated with Re-EC-DG (0-5 mM) for 48 hrs. Immunoblotting were then performed on nuclear extracts with 50 µg. For radiotheranostic assessment studies, 13762 breast tumor-bearing rats were imaged with In-111-EC-DG and tumor/muscle ratios were determined at 0.5-24 hrs. Radiation absorbed dose was estimated for the use of Y-90-EC-DG. Results: There was a dose response relationship of Re-EC-DG inhibition in DLBCL cells. Extensive apoptosis was observed at 24 hrs in lymphoma cell cultures. Re-EC-DG showed significant tumorcidal activity compared to normal B-lymphocyte activity at doses >0.17 µmol. Re-EC-DG caused a decreased expression of HIF-1alpha under normoxic conditions in DLBCL-LY10 cells. Tumor-to-muscle ratios for In-111-EC-DG were 5.43±0.45 to 7.80±0.05 whereas In-111-EC had 3.24±0.32 to 4.64±0.16 at 0.5-24 hrs. Radiation exposure of In-111-EC-DG to whole body, blood-forming organs, gonads, and effective dose equivalent for a single dose at 5 mCi was below the limits of 3 rad annually and 5 rad total. The absorbed dose in all other organs was below the limits of 5 rad annually and 15 rad total. Conclusion: EC-DG is a useful molecular theranostic compound. In-111-EC-DG has favorable dosimetry, providing a potential use of Y-90-EC-DG to treat cancers. Re-EC-DG inhibits HIF-1alpha expression and is an attractive anti-proliferation compound. Citation Format: {Authors}. {Abstract title} [abstract]. In: Proceedings of the 102nd Annual Meeting of the American Association for Cancer Research; 2011 Apr 2-6; Orlando, FL. Philadelphia (PA): AACR; Cancer Res 2011;71(8 Suppl):Abstract nr 306. doi:10.1158/1538-7445.AM2011-306