Tokens-to-Token ViT: Training Vision Transformers from Scratch on ImageNet

安全性令牌 计算机科学 变压器 人工智能 像素 刮擦 模式识别(心理学) 词汇分析 程序设计语言 计算机网络 工程类 电气工程 电压
作者
Li Yuan,Yunpeng Chen,Tao Wang,Weihao Yu,Yujun Shi,Zihang Jiang,Francis E. H. Tay,Jiashi Feng,Shuicheng Yan
标识
DOI:10.1109/iccv48922.2021.00060
摘要

Transformers, which are popular for language modeling, have been explored for solving vision tasks recently, e.g., the Vision Transformer (ViT) for image classification. The ViT model splits each image into a sequence of tokens with fixed length and then applies multiple Transformer layers to model their global relation for classification. However, ViT achieves inferior performance to CNNs when trained from scratch on a midsize dataset like ImageNet. We find it is because: 1) the simple tokenization of input images fails to model the important local structure such as edges and lines among neighboring pixels, leading to low training sample efficiency; 2) the redundant attention backbone design of ViT leads to limited feature richness for fixed computation budgets and limited training samples. To overcome such limitations, we propose a new Tokens-To-Token Vision Transformer (T2T-VTT), which incorporates 1) a layer-wise Tokens-to-Token (T2T) transformation to progressively structurize the image to tokens by recursively aggregating neighboring Tokens into one Token (Tokens-to-Token), such that local structure represented by surrounding tokens can be modeled and tokens length can be reduced; 2) an efficient backbone with a deep-narrow structure for vision transformer motivated by CNN architecture design after empirical study. Notably, T2T-ViT reduces the parameter count and MACs of vanilla ViT by half, while achieving more than 3.0% improvement when trained from scratch on ImageNet. It also outperforms ResNets and achieves comparable performance with MobileNets by directly training on ImageNet. For example, T2T-ViT with comparable size to ResNet50 (21.5M parameters) can achieve 83.3% top1 accuracy in image resolution 384x384 on ImageNet. 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
晓畅完成签到,获得积分10
2秒前
科研通AI6.1应助对称破缺采纳,获得10
5秒前
刘十一完成签到 ,获得积分10
5秒前
5秒前
慢半拍完成签到,获得积分10
5秒前
von完成签到,获得积分10
5秒前
7秒前
7秒前
7秒前
7秒前
7秒前
赘婿应助科研通管家采纳,获得10
7秒前
7秒前
Criminology34应助科研通管家采纳,获得10
7秒前
17263365721完成签到 ,获得积分10
7秒前
冬天的回忆完成签到 ,获得积分10
7秒前
风清扬应助科研通管家采纳,获得30
8秒前
李健应助科研通管家采纳,获得10
8秒前
dangdang应助科研通管家采纳,获得40
8秒前
8秒前
Frank应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
爆米花应助科研通管家采纳,获得10
8秒前
Criminology34应助科研通管家采纳,获得10
9秒前
Frank应助科研通管家采纳,获得10
9秒前
9秒前
烟花应助科研通管家采纳,获得10
9秒前
泽松应助科研通管家采纳,获得10
9秒前
9秒前
大个应助科研通管家采纳,获得50
9秒前
量子星尘发布了新的文献求助10
9秒前
小二郎应助Narcissus采纳,获得10
9秒前
寒冷的小熊猫完成签到,获得积分10
10秒前
11秒前
华仔应助苗苗会喵喵采纳,获得10
12秒前
14秒前
wayne完成签到,获得积分10
16秒前
zcydbttj2011完成签到 ,获得积分10
20秒前
limo完成签到 ,获得积分10
20秒前
ying完成签到,获得积分10
22秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742315
求助须知:如何正确求助?哪些是违规求助? 5407721
关于积分的说明 15344704
捐赠科研通 4883721
什么是DOI,文献DOI怎么找? 2625220
邀请新用户注册赠送积分活动 1574084
关于科研通互助平台的介绍 1531060