已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Tokens-to-Token ViT: Training Vision Transformers from Scratch on ImageNet

安全性令牌 计算机科学 变压器 人工智能 像素 刮擦 模式识别(心理学) 词汇分析 程序设计语言 计算机网络 工程类 电气工程 电压
作者
Li Yuan,Yunpeng Chen,Tao Wang,Weihao Yu,Yujun Shi,Zihang Jiang,Francis E. H. Tay,Jiashi Feng,Shuicheng Yan
标识
DOI:10.1109/iccv48922.2021.00060
摘要

Transformers, which are popular for language modeling, have been explored for solving vision tasks recently, e.g., the Vision Transformer (ViT) for image classification. The ViT model splits each image into a sequence of tokens with fixed length and then applies multiple Transformer layers to model their global relation for classification. However, ViT achieves inferior performance to CNNs when trained from scratch on a midsize dataset like ImageNet. We find it is because: 1) the simple tokenization of input images fails to model the important local structure such as edges and lines among neighboring pixels, leading to low training sample efficiency; 2) the redundant attention backbone design of ViT leads to limited feature richness for fixed computation budgets and limited training samples. To overcome such limitations, we propose a new Tokens-To-Token Vision Transformer (T2T-VTT), which incorporates 1) a layer-wise Tokens-to-Token (T2T) transformation to progressively structurize the image to tokens by recursively aggregating neighboring Tokens into one Token (Tokens-to-Token), such that local structure represented by surrounding tokens can be modeled and tokens length can be reduced; 2) an efficient backbone with a deep-narrow structure for vision transformer motivated by CNN architecture design after empirical study. Notably, T2T-ViT reduces the parameter count and MACs of vanilla ViT by half, while achieving more than 3.0% improvement when trained from scratch on ImageNet. It also outperforms ResNets and achieves comparable performance with MobileNets by directly training on ImageNet. For example, T2T-ViT with comparable size to ResNet50 (21.5M parameters) can achieve 83.3% top1 accuracy in image resolution 384x384 on ImageNet. 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Fosuer_3发布了新的文献求助10
1秒前
marcg4完成签到,获得积分10
4秒前
liwayou完成签到,获得积分10
5秒前
晴子发布了新的文献求助10
5秒前
小易完成签到,获得积分20
6秒前
6秒前
阿文完成签到 ,获得积分10
7秒前
11秒前
lokiyyy发布了新的文献求助10
11秒前
煎饼果子完成签到 ,获得积分10
11秒前
陆康完成签到 ,获得积分10
14秒前
丢丢发布了新的文献求助10
14秒前
顾矜应助哇哈哈采纳,获得10
15秒前
wanwuzhumu完成签到,获得积分10
15秒前
liu完成签到 ,获得积分10
15秒前
临河盗龙发布了新的文献求助10
16秒前
17秒前
19秒前
张江泽完成签到,获得积分10
20秒前
古夕完成签到,获得积分10
21秒前
21秒前
21完成签到,获得积分20
22秒前
长歌发布了新的文献求助10
24秒前
哇哈哈发布了新的文献求助10
27秒前
28秒前
在水一方应助临河盗龙采纳,获得30
28秒前
28秒前
29秒前
嘿嘿完成签到,获得积分20
30秒前
赶月亮发布了新的文献求助10
32秒前
33秒前
CodeCraft应助科研通管家采纳,获得10
33秒前
科研通AI6应助科研通管家采纳,获得10
33秒前
小蘑菇应助科研通管家采纳,获得10
33秒前
33秒前
完美世界应助科研通管家采纳,获得10
33秒前
科研通AI6应助科研通管家采纳,获得30
33秒前
Orange应助科研通管家采纳,获得10
33秒前
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5663955
求助须知:如何正确求助?哪些是违规求助? 4855706
关于积分的说明 15106735
捐赠科研通 4822347
什么是DOI,文献DOI怎么找? 2581405
邀请新用户注册赠送积分活动 1535549
关于科研通互助平台的介绍 1493834