Tokens-to-Token ViT: Training Vision Transformers from Scratch on ImageNet

安全性令牌 计算机科学 变压器 人工智能 像素 刮擦 模式识别(心理学) 词汇分析 程序设计语言 计算机网络 工程类 电压 电气工程
作者
Li Yuan,Yunpeng Chen,Tao Wang,Weihao Yu,Yujun Shi,Zihang Jiang,Francis E. H. Tay,Jiashi Feng,Shuicheng Yan
标识
DOI:10.1109/iccv48922.2021.00060
摘要

Transformers, which are popular for language modeling, have been explored for solving vision tasks recently, e.g., the Vision Transformer (ViT) for image classification. The ViT model splits each image into a sequence of tokens with fixed length and then applies multiple Transformer layers to model their global relation for classification. However, ViT achieves inferior performance to CNNs when trained from scratch on a midsize dataset like ImageNet. We find it is because: 1) the simple tokenization of input images fails to model the important local structure such as edges and lines among neighboring pixels, leading to low training sample efficiency; 2) the redundant attention backbone design of ViT leads to limited feature richness for fixed computation budgets and limited training samples. To overcome such limitations, we propose a new Tokens-To-Token Vision Transformer (T2T-VTT), which incorporates 1) a layer-wise Tokens-to-Token (T2T) transformation to progressively structurize the image to tokens by recursively aggregating neighboring Tokens into one Token (Tokens-to-Token), such that local structure represented by surrounding tokens can be modeled and tokens length can be reduced; 2) an efficient backbone with a deep-narrow structure for vision transformer motivated by CNN architecture design after empirical study. Notably, T2T-ViT reduces the parameter count and MACs of vanilla ViT by half, while achieving more than 3.0% improvement when trained from scratch on ImageNet. It also outperforms ResNets and achieves comparable performance with MobileNets by directly training on ImageNet. For example, T2T-ViT with comparable size to ResNet50 (21.5M parameters) can achieve 83.3% top1 accuracy in image resolution 384x384 on ImageNet. 1
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
2秒前
3秒前
无言发布了新的文献求助10
5秒前
5秒前
6秒前
bjx关闭了bjx文献求助
6秒前
无花果应助文小杰采纳,获得10
8秒前
快乐马发布了新的文献求助10
9秒前
糊涂的丹南完成签到 ,获得积分10
10秒前
xliiii发布了新的文献求助10
14秒前
Dritsw应助科研进化中采纳,获得10
14秒前
wanci应助科研进化中采纳,获得10
14秒前
桐桐应助海德堡采纳,获得10
15秒前
FFF发布了新的文献求助30
15秒前
感动满天完成签到,获得积分10
15秒前
虚幻莫英完成签到 ,获得积分10
19秒前
丁牛青发布了新的文献求助30
19秒前
CodeCraft应助huxiaomin采纳,获得10
21秒前
领导范儿应助快乐马采纳,获得10
21秒前
王旗关注了科研通微信公众号
22秒前
风中的静珊完成签到 ,获得积分10
22秒前
24秒前
缓缓降落完成签到,获得积分10
26秒前
上官若男应助念姬采纳,获得10
29秒前
GT发布了新的文献求助10
29秒前
29秒前
keyaner发布了新的文献求助10
30秒前
31秒前
LIU完成签到 ,获得积分10
32秒前
_Forelsket_完成签到,获得积分10
32秒前
32秒前
xr发布了新的文献求助10
33秒前
小豆豆应助zbh采纳,获得10
34秒前
日富一日的fighter完成签到,获得积分10
34秒前
迪娜完成签到,获得积分10
34秒前
研友_VZG7GZ应助猪猪hero采纳,获得10
35秒前
Johnlei完成签到,获得积分10
35秒前
海德堡发布了新的文献求助10
36秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966147
求助须知:如何正确求助?哪些是违规求助? 3511532
关于积分的说明 11158765
捐赠科研通 3246148
什么是DOI,文献DOI怎么找? 1793309
邀请新用户注册赠送积分活动 874295
科研通“疑难数据库(出版商)”最低求助积分说明 804343