亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Tokens-to-Token ViT: Training Vision Transformers from Scratch on ImageNet

安全性令牌 计算机科学 变压器 人工智能 像素 刮擦 模式识别(心理学) 词汇分析 程序设计语言 计算机网络 工程类 电压 电气工程
作者
Li Yuan,Yunpeng Chen,Tao Wang,Weihao Yu,Yujun Shi,Zihang Jiang,Francis E. H. Tay,Jiashi Feng,Shuicheng Yan
标识
DOI:10.1109/iccv48922.2021.00060
摘要

Transformers, which are popular for language modeling, have been explored for solving vision tasks recently, e.g., the Vision Transformer (ViT) for image classification. The ViT model splits each image into a sequence of tokens with fixed length and then applies multiple Transformer layers to model their global relation for classification. However, ViT achieves inferior performance to CNNs when trained from scratch on a midsize dataset like ImageNet. We find it is because: 1) the simple tokenization of input images fails to model the important local structure such as edges and lines among neighboring pixels, leading to low training sample efficiency; 2) the redundant attention backbone design of ViT leads to limited feature richness for fixed computation budgets and limited training samples. To overcome such limitations, we propose a new Tokens-To-Token Vision Transformer (T2T-VTT), which incorporates 1) a layer-wise Tokens-to-Token (T2T) transformation to progressively structurize the image to tokens by recursively aggregating neighboring Tokens into one Token (Tokens-to-Token), such that local structure represented by surrounding tokens can be modeled and tokens length can be reduced; 2) an efficient backbone with a deep-narrow structure for vision transformer motivated by CNN architecture design after empirical study. Notably, T2T-ViT reduces the parameter count and MACs of vanilla ViT by half, while achieving more than 3.0% improvement when trained from scratch on ImageNet. It also outperforms ResNets and achieves comparable performance with MobileNets by directly training on ImageNet. For example, T2T-ViT with comparable size to ResNet50 (21.5M parameters) can achieve 83.3% top1 accuracy in image resolution 384x384 on ImageNet. 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
英俊的铭应助yanifang采纳,获得30
9秒前
16秒前
17秒前
19秒前
AXX041795发布了新的文献求助10
21秒前
烟花应助luming采纳,获得30
22秒前
西瓜霜发布了新的文献求助10
23秒前
32秒前
西瓜霜完成签到,获得积分10
36秒前
领导范儿应助AXX041795采纳,获得10
36秒前
36秒前
00hello00发布了新的文献求助10
38秒前
luming发布了新的文献求助30
41秒前
luming完成签到,获得积分10
55秒前
久某完成签到,获得积分20
55秒前
量子星尘发布了新的文献求助10
59秒前
59秒前
冷静小懒虫完成签到,获得积分10
1分钟前
1分钟前
1分钟前
顾矜应助li采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
地老天框完成签到,获得积分10
1分钟前
1分钟前
1分钟前
nhzz2023完成签到 ,获得积分0
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
lzp完成签到,获得积分10
1分钟前
执着寄容发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5723513
求助须知:如何正确求助?哪些是违规求助? 5278467
关于积分的说明 15298818
捐赠科研通 4871973
什么是DOI,文献DOI怎么找? 2616395
邀请新用户注册赠送积分活动 1566216
关于科研通互助平台的介绍 1523110