Tokens-to-Token ViT: Training Vision Transformers from Scratch on ImageNet

安全性令牌 计算机科学 变压器 人工智能 像素 刮擦 模式识别(心理学) 词汇分析 程序设计语言 计算机网络 工程类 电压 电气工程
作者
Li Yuan,Yunpeng Chen,Tao Wang,Weihao Yu,Yujun Shi,Zihang Jiang,Francis E. H. Tay,Jiashi Feng,Shuicheng Yan
标识
DOI:10.1109/iccv48922.2021.00060
摘要

Transformers, which are popular for language modeling, have been explored for solving vision tasks recently, e.g., the Vision Transformer (ViT) for image classification. The ViT model splits each image into a sequence of tokens with fixed length and then applies multiple Transformer layers to model their global relation for classification. However, ViT achieves inferior performance to CNNs when trained from scratch on a midsize dataset like ImageNet. We find it is because: 1) the simple tokenization of input images fails to model the important local structure such as edges and lines among neighboring pixels, leading to low training sample efficiency; 2) the redundant attention backbone design of ViT leads to limited feature richness for fixed computation budgets and limited training samples. To overcome such limitations, we propose a new Tokens-To-Token Vision Transformer (T2T-VTT), which incorporates 1) a layer-wise Tokens-to-Token (T2T) transformation to progressively structurize the image to tokens by recursively aggregating neighboring Tokens into one Token (Tokens-to-Token), such that local structure represented by surrounding tokens can be modeled and tokens length can be reduced; 2) an efficient backbone with a deep-narrow structure for vision transformer motivated by CNN architecture design after empirical study. Notably, T2T-ViT reduces the parameter count and MACs of vanilla ViT by half, while achieving more than 3.0% improvement when trained from scratch on ImageNet. It also outperforms ResNets and achieves comparable performance with MobileNets by directly training on ImageNet. For example, T2T-ViT with comparable size to ResNet50 (21.5M parameters) can achieve 83.3% top1 accuracy in image resolution 384x384 on ImageNet. 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
KDC完成签到,获得积分10
刚刚
刚刚
刚刚
1秒前
英姑应助南音采纳,获得10
1秒前
mmyhn应助7bruce采纳,获得20
1秒前
脑洞疼应助南音采纳,获得10
1秒前
英姑应助南音采纳,获得10
1秒前
酷波er应助南音采纳,获得10
1秒前
CipherSage应助南音采纳,获得10
1秒前
CodeCraft应助平凡的世界采纳,获得10
1秒前
研友_VZG7GZ应助南音采纳,获得10
1秒前
科目三应助南音采纳,获得10
1秒前
所所应助南音采纳,获得10
1秒前
田様应助南音采纳,获得10
1秒前
英俊的铭应助南音采纳,获得10
2秒前
2秒前
里里涵完成签到 ,获得积分10
2秒前
包子发布了新的文献求助10
3秒前
3秒前
3秒前
一起飞发布了新的文献求助10
3秒前
zfy完成签到,获得积分10
3秒前
3秒前
3秒前
4秒前
4秒前
ding应助柒玉染采纳,获得10
4秒前
5秒前
斯文败类应助斑马采纳,获得10
5秒前
chanyed完成签到,获得积分10
5秒前
5秒前
张张张发布了新的文献求助10
5秒前
DDDD发布了新的文献求助10
6秒前
柔弱的老三完成签到,获得积分10
6秒前
Cody发布了新的文献求助30
6秒前
XINYUZHU发布了新的文献求助10
7秒前
yaozhaoyi发布了新的文献求助10
7秒前
阿木发布了新的文献求助10
7秒前
7秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5587661
求助须知:如何正确求助?哪些是违规求助? 4670874
关于积分的说明 14784407
捐赠科研通 4623392
什么是DOI,文献DOI怎么找? 2531379
邀请新用户注册赠送积分活动 1500063
关于科研通互助平台的介绍 1468151