已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Hierarchical fracture classification of proximal femur X-Ray images using a multistage Deep Learning approach

医学 卷积神经网络 接收机工作特性 断裂(地质) 股骨 模式识别(心理学) 人工智能 精确性和召回率 科恩卡帕 F1得分 深度学习 人工神经网络 计算机科学 机器学习 外科 内科学 工程类 岩土工程
作者
Leonardo Tanzi,Enrico Vezzetti,Rodrigo Moreno,Alessandro Aprato,Andrea Audisio,Alessandro Massè
出处
期刊:European Journal of Radiology [Elsevier]
卷期号:133: 109373-109373 被引量:45
标识
DOI:10.1016/j.ejrad.2020.109373
摘要

Purpose Suspected fractures are among the most common reasons for patients to visit emergency departments and often can be difficult to detect and analyze them on film scans. Therefore, we aimed to design a Deep Learning-based tool able to help doctors in diagnosis of bone fractures, following the hierarchical classification proposed by the Arbeitsgemeinschaft für Osteosynthesefragen (AO) Foundation and the Orthopaedic Trauma Association (OTA). Methods 2453 manually annotated images of proximal femur were used for the classification in different fracture types (1133 Unbroken femur, 570 type A, 750 type B). Secondly, the A type fractures were further classified into the types A1, A2, A3. Two approaches were implemented: the first is a fine-tuned InceptionV3 convolutional neural network (CNN), used as a baseline for our own proposed approach; the second is a multistage architecture composed by successive CNNs in cascade, perfectly suited to the hierarchical structure of the AO/OTA classification. Gradient Class Activation Maps (Grad-CAM) where used to visualize the most relevant areas of the images for classification. The averaged ability of the CNN was measured with accuracy, area under receiver operating characteristics curve (AUC), recall, precision and F1-score. The averaged ability of the orthopedists with and without the help of the CNN was measured with accuracy and Cohen’s Kappa coefficient. Results We obtained an averaged accuracy of 0.86 (CI 0.84−0.88) for three classes classification and 0.81 (CI 0.79−0.82) for five classes classification. The average accuracy improvement of specialists was 14 % with and without the CAD (Computer Assisted Diagnosis) system. Conclusion We showed the potential of using a CAD system based on CNN for improving diagnosis accuracy and for helping students with a lower level of expertise. We started our work with proximal femur fractures and we aim to extend it to all bone segments further in the future, in order to implement a tool that could be used in every-day hospital routine.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助负责觅海采纳,获得10
3秒前
仁爱青文完成签到 ,获得积分10
8秒前
Jasper应助meilinkai采纳,获得10
11秒前
殷勤的阑悦完成签到 ,获得积分10
11秒前
汉堡包应助奋斗的绝悟采纳,获得10
16秒前
科研通AI2S应助dylan采纳,获得10
17秒前
十一完成签到,获得积分10
19秒前
科研废物完成签到,获得积分10
20秒前
22秒前
科研通AI2S应助韩冬冬采纳,获得10
22秒前
徐叽钰应助七七采纳,获得10
26秒前
28秒前
嘻嘻完成签到 ,获得积分10
28秒前
Hello应助生动的天亦采纳,获得10
34秒前
十泱完成签到 ,获得积分10
34秒前
34秒前
36秒前
Owen应助优美的背包采纳,获得10
36秒前
降智小甜饼完成签到,获得积分10
38秒前
40秒前
40秒前
科目三应助谷歌采纳,获得10
42秒前
杨小桐发布了新的文献求助10
42秒前
chanjed关注了科研通微信公众号
42秒前
阳阳阳完成签到 ,获得积分10
43秒前
44秒前
乐正尔竹发布了新的文献求助10
45秒前
45秒前
碧蓝的凡柔完成签到,获得积分10
46秒前
美好书瑶发布了新的文献求助10
48秒前
50秒前
52秒前
满当当完成签到,获得积分10
53秒前
乐正尔竹完成签到,获得积分20
54秒前
Sooinlee发布了新的文献求助10
57秒前
57秒前
鲤鱼坤发布了新的文献求助10
59秒前
跳跃的摩托完成签到 ,获得积分10
59秒前
1分钟前
1分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136896
求助须知:如何正确求助?哪些是违规求助? 2787866
关于积分的说明 7783548
捐赠科研通 2443945
什么是DOI,文献DOI怎么找? 1299509
科研通“疑难数据库(出版商)”最低求助积分说明 625461
版权声明 600954