Identification of biomarkers correlated with diagnosis and prognosis of endometrial cancer using bioinformatics analysis

生物 基因 子宫内膜癌 关贸总协定 小RNA 癌症 基因表达 小桶 基因表达调控 遗传学 癌症研究 计算生物学 生物信息学 转录组
作者
Huishan Zhao,Aihua Jiang,Mingwei Yu,Hongchu Bao
出处
期刊:Journal of Cellular Biochemistry [Wiley]
卷期号:121 (12): 4908-4921 被引量:9
标识
DOI:10.1002/jcb.29819
摘要

Abstract Endometrial cancer (EC) is one of the most common malignancies in the female genital system, characterized by high mortality and recurrence rates. This study attempted to screen key genes and potential prognostic biomarkers for EC using bioinformatics analysis. Twenty‐seven normal endometrial tissues and 135 EC samples were collected from four Gene Expression Omnibus (GEO) databases, then we identified the differentially expressed genes (DEGs) and conducted downstream analyses. Moreover, we screened hub genes by constructing a protein‐protein interaction (PPI) network. Finally, we assessed the prognostic values and molecular mechanism of the potential prognostic genes using the Kaplan‐Meier curve and Gene Set Enrichment Analysis (GSEA). As a result, 28 upregulated and 94 downregulated genes were determined after gene integration of these four GEO data sets. Gene Ontology analysis indicated that DEGs were mainly involved in transcriptional regulation and cell proliferation. The Kyoto Encyclopedia of Gene and Genome pathway analysis primarily related to transcriptional misregulation and apoptosis. Moreover, the PPI analysis revealed 10 hub genes (JUN, UBE2I, GATA2, WT1, PIAS1, FOXL2, RUNXI, EZR, TCF4, and NR2F2) with a high degree of connectivity, among them, the expression tendency of nine genes except UBE2I were consistent with messenger RNA level from The Cancer Genome Atlas data. Furthermore, only FOXL2, TCF4, and NR2F2 were significantly correlated with prognosis of EC patients, and their low expression associated biological pathways were enriched in the cell cycle and fatty acid metabolism. In conclusion, this study identified three key genes as biomarkers and potential therapeutic targets of EC on the basis of integrated bioinformatics analysis. The findings will improve our comprehension of the molecular mechanisms underlying the pathogenesis and prognosis of EC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
0.0完成签到,获得积分10
刚刚
小殷发布了新的文献求助10
刚刚
仇悦完成签到,获得积分10
1秒前
1秒前
UGO发布了新的文献求助10
1秒前
上官若男应助hjs采纳,获得10
2秒前
清脆大门完成签到,获得积分10
2秒前
小蕾同学完成签到,获得积分10
2秒前
zyxxxx完成签到,获得积分10
2秒前
2秒前
WENS完成签到,获得积分10
3秒前
酒九完成签到,获得积分10
3秒前
Andrew完成签到,获得积分10
3秒前
泡沫发布了新的文献求助10
3秒前
小飞侠应助Dong采纳,获得10
4秒前
4秒前
4秒前
小殷完成签到,获得积分10
4秒前
活力数据线完成签到 ,获得积分10
4秒前
amumu完成签到,获得积分10
4秒前
Youdge完成签到,获得积分10
5秒前
Solarenergy完成签到,获得积分0
5秒前
诗图完成签到,获得积分10
5秒前
5秒前
热情孤丹完成签到,获得积分10
6秒前
cola完成签到 ,获得积分10
6秒前
ZOLEI完成签到,获得积分10
6秒前
晓晖完成签到,获得积分10
6秒前
Yang完成签到,获得积分10
6秒前
微笑沛文发布了新的文献求助10
7秒前
杜不是杜完成签到,获得积分10
7秒前
ziyue发布了新的文献求助10
7秒前
popo完成签到,获得积分10
7秒前
⊙▽⊙完成签到,获得积分10
7秒前
大模型应助Silence采纳,获得10
7秒前
8秒前
专注妙旋发布了新的文献求助10
8秒前
我要毕业完成签到,获得积分10
9秒前
火星上的雨莲完成签到,获得积分10
9秒前
幸福岩完成签到,获得积分10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Interest Rate Modeling. Volume 2: Term Structure Models 600
Dynamika przenośników łańcuchowych 600
The King's Magnates: A Study of the Highest Officials of the Neo-Assyrian Empire 500
Interest Rate Modeling. Volume 1: Foundations and Vanilla Models 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3539582
求助须知:如何正确求助?哪些是违规求助? 3117244
关于积分的说明 9329500
捐赠科研通 2814939
什么是DOI,文献DOI怎么找? 1547364
邀请新用户注册赠送积分活动 720872
科研通“疑难数据库(出版商)”最低求助积分说明 712333