Learning to Be Proactive: Self-Regulation of UAV Based Networks With UAV and User Dynamics

强化学习 计算机科学 异步通信 趋同(经济学) 状态空间 理论(学习稳定性) 控制器(灌溉) 维数(图论) 弹道 国家(计算机科学) 人工智能 动作(物理) 分布式计算 机器学习 计算机网络 算法 数学 生物 量子力学 统计 经济增长 物理 经济 纯数学 农学 天文
作者
Ran Zhang,Miao Wang,Lin X. Cai,Xuemin Shen
出处
期刊:IEEE Transactions on Wireless Communications [Institute of Electrical and Electronics Engineers]
卷期号:20 (7): 4406-4419 被引量:24
标识
DOI:10.1109/twc.2021.3058533
摘要

Multi-Unmanned Aerial Vehicle (UAV) control is one of the major research interests in UAV-based networks. Yet few existing works focus on how the network should optimally react when the UAV lineup and user distribution change. In this work, proactive self-regulation (PSR) of UAV-based networks is investigated when one or more UAVs are about to quit or join the network, with considering dynamic user distribution. We target at an optimal UAV trajectory control policy which proactively relocates the UAVs whenever the UAV lineup is about to change, rather than passively dispatches the UAVs after the change. Specifically, a deep reinforcement learning (DRL)-based self-regulation approach is developed to maximize the accumulated user satisfaction (US) score for a certain period within which at least one UAV will quit or join the network. To handle the changed dimension of the state-action space before and after the lineup changes, the state transition is deliberately designed. To accommodate continuous state and action space, an actor-critic based DRL, i.e., deep deterministic policy gradient (DDPG), is applied with better convergence stability. To effectively promote learning exploration around the timing of lineup change, an asynchronous parallel computing (APC) learning structure is proposed. Referred to as PSR-APC, the developed approach is then extended to the case of dynamic user distribution by incorporating time as one of the agent states. Finally, numerical results are presented to demonstrate the convergence and superiority of PSR-APC over a passive reaction method, and its capability in jointly handling the dynamics of both UAV lineup and user distribution.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
minisword完成签到,获得积分10
刚刚
郑欢欢完成签到,获得积分10
1秒前
44完成签到,获得积分10
1秒前
枫之林发布了新的文献求助10
2秒前
123完成签到,获得积分20
2秒前
2秒前
wen发布了新的文献求助10
2秒前
上上签完成签到 ,获得积分10
2秒前
2秒前
科研通AI2S应助龙华之士采纳,获得10
2秒前
3秒前
Jenkin发布了新的文献求助10
3秒前
南风发布了新的文献求助10
3秒前
3秒前
无限的忆山完成签到,获得积分10
3秒前
NexusExplorer应助龙傲天采纳,获得10
4秒前
lele发布了新的文献求助30
4秒前
声声不息发布了新的文献求助10
4秒前
郑欢欢发布了新的文献求助200
5秒前
wen完成签到 ,获得积分10
5秒前
awe发布了新的文献求助10
5秒前
5秒前
大神完成签到,获得积分10
6秒前
6秒前
小恶完成签到,获得积分20
6秒前
7秒前
赘婿应助丹三采纳,获得10
7秒前
8秒前
9秒前
kkkk发布了新的文献求助10
10秒前
wen完成签到,获得积分10
11秒前
minisword发布了新的文献求助10
11秒前
geather完成签到,获得积分10
12秒前
聪慧紫菱发布了新的文献求助10
13秒前
sylc001完成签到,获得积分10
13秒前
14秒前
李星星发布了新的文献求助10
15秒前
16秒前
Jasmine发布了新的文献求助10
17秒前
awe发布了新的文献求助10
17秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 990
Field Guide to Insects of South Africa 660
Foucault's Technologies Another Way of Cutting Reality 500
A Simple Constitutive Description for Cellular Concrete 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3394710
求助须知:如何正确求助?哪些是违规求助? 3004871
关于积分的说明 8815537
捐赠科研通 2691541
什么是DOI,文献DOI怎么找? 1474361
科研通“疑难数据库(出版商)”最低求助积分说明 681893
邀请新用户注册赠送积分活动 675051