Blockchain-Enabled Federated Learning With Mechanism Design

块链 竞赛 数字加密货币 计算机科学 协议(科学) 机制(生物学) 机构设计 竞赛(生物学) 领域(数学) 计算机安全 知识管理 微观经济学 哲学 替代医学 纯数学 法学 经济 病理 认识论 生物 医学 数学 生态学 政治学
作者
Kentaroh Toyoda,Jun Zhao,Allan N. Zhang,P. Takis Mathiopoulos
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:8: 219744-219756 被引量:45
标识
DOI:10.1109/access.2020.3043037
摘要

Federated learning (FL) is a promising decentralized deep learning technique that allows users to collaboratively update models without sharing their own data. However, due to its decentralized nature, no one can monitor workers' behavior, and they may thus deviate protocols (e.g., participating without updating any models). To solve this problem, many researchers have proposed blockchain-enabled FL to reward workers (or users) with cryptocurrencies to encourage workers to follow the protocols. However, there is a lack of theoretical discussions concerning how such rewards impact workers' behavior and how much should be given to workers. In this article, we propose a mechanism-design-oriented FL protocol on a public blockchain network. Mechanism design (MD) is often used to make a rule intended to achieve a specific goal. With MD in mind, we introduce the concept of competition into blockchain-based FL so that only workers who have contributed well can obtain rewards, which naturally prevents workers from deviating from the protocol. We then mathematically answer the following questions with contest theory, a novel field of study in economics: i) What behavior will workers take?; ii) how much effort should workers exert to maximize their profits?; iii) how many workers should be rewarded?; and iv) what is the best proportion for reward distribution?
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
花开富贵完成签到,获得积分10
2秒前
Awikl完成签到,获得积分10
2秒前
3秒前
4秒前
李健应助Moving_Dr采纳,获得10
4秒前
illiterate完成签到,获得积分10
4秒前
Riggle G发布了新的文献求助10
4秒前
sandse7en完成签到 ,获得积分10
4秒前
丘比特应助jiahao采纳,获得10
4秒前
CipherSage应助细心不二采纳,获得10
5秒前
5秒前
胖虎不胖完成签到,获得积分10
6秒前
鲜于觅松完成签到,获得积分10
6秒前
8秒前
miao发布了新的文献求助10
10秒前
11秒前
Rex完成签到,获得积分10
12秒前
精明芒果发布了新的文献求助10
13秒前
15秒前
细心不二完成签到,获得积分10
15秒前
Y-L发布了新的文献求助10
16秒前
17秒前
小蘑菇应助fangpiupiu采纳,获得10
17秒前
17秒前
QDU应助积极的忆曼采纳,获得10
17秒前
18秒前
工大搬砖战神完成签到,获得积分10
18秒前
20秒前
20秒前
22秒前
生命奋斗完成签到,获得积分10
23秒前
果砸完成签到,获得积分10
23秒前
hwq完成签到,获得积分10
23秒前
23秒前
肿瘤克星发布了新的文献求助10
25秒前
生命奋斗发布了新的文献求助30
25秒前
26秒前
呼噜噜完成签到 ,获得积分10
26秒前
我像风一样自由完成签到 ,获得积分10
26秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3304504
求助须知:如何正确求助?哪些是违规求助? 2938464
关于积分的说明 8488809
捐赠科研通 2612923
什么是DOI,文献DOI怎么找? 1427023
科研通“疑难数据库(出版商)”最低求助积分说明 662889
邀请新用户注册赠送积分活动 647385