Morphology Control and Na+ Doping toward High-Performance Li-Rich Layered Cathode Materials for Lithium-Ion Batteries

电解质 电化学 锂(药物) 阴极 兴奋剂 材料科学 离子 化学工程 光电子学 无机化学 电极 化学 物理化学 有机化学 工程类 内分泌学 医学
作者
Qian Wang,Wei He,Laisen Wang,Shuai Li,Hongfei Zheng,Qun Liu,Yuxin Cai,Jie Lin,Qingshui Xie,Dong‐Liang Peng
出处
期刊:ACS Sustainable Chemistry & Engineering [American Chemical Society]
卷期号:9 (1): 197-206 被引量:31
标识
DOI:10.1021/acssuschemeng.0c06595
摘要

The lithium-rich manganese (LRM)-based cathode materials are always subjected to poor rate capacity and terrible voltage fading. Herein, sodium citrate as a chelating agent is introduced to synthesize LRM cathode materials with high structure stability by the solvothermal method to solve the abovementioned issues. Sodium citrate can effectively control the morphology of cathode materials with a small size of primary particles, which can prevent the side reaction between the active materials and electrolyte and benefit Li+ diffusion. Meanwhile, the hydroxyl groups in sodium citrate can alter the crystal growth thermodynamics and thereby induce the formation of the active {010} planes under the solvothermal condition, which facilitates the formation of a good layered structure, so that the electrochemical reaction kinetics and rate performance are facilitated dramatically. Furthermore, benefitting from the doping of Na+, the structure of the cathode material does not collapse during repeated charge–discharge cycles, so that voltage stability is enhanced greatly. Consequently, at a current density of 5 C after cycling 200 times, the reversible capacity of the designed LRM cathode is 166 mA h g–1 with a high capacity retention of 90.1%, and the median voltage remains at 3.21 V with a voltage retention of 91.4%. The median voltage could remain as high as 3.37 V with a very high voltage retention of 94.1% even at 10 C after 200 cycles. This study proposes a novel strategy that utilizes the synergistic modification of morphology design and Na+ doping to increase the lithium storage performance of LRM cathode materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI5应助务实青亦采纳,获得10
刚刚
1秒前
小鲨鱼发布了新的文献求助10
1秒前
1秒前
科目三应助栀子花的梦采纳,获得10
2秒前
领导范儿应助kinglear采纳,获得10
2秒前
科目三应助莽哥采纳,获得10
2秒前
瑾风阳完成签到,获得积分10
3秒前
兜有米完成签到,获得积分10
3秒前
4秒前
仲天与发布了新的文献求助10
4秒前
ll发布了新的文献求助10
4秒前
conny应助sss采纳,获得10
5秒前
5秒前
6秒前
7秒前
男研选手完成签到,获得积分10
8秒前
8秒前
Mzo发布了新的文献求助10
8秒前
坦率的万言完成签到,获得积分10
8秒前
充电宝应助非鱼鱼子采纳,获得10
9秒前
9秒前
9秒前
丘比特应助科研通管家采纳,获得10
9秒前
踏实无敌应助科研通管家采纳,获得10
9秒前
华仔应助科研通管家采纳,获得10
9秒前
10秒前
踏实无敌应助科研通管家采纳,获得10
10秒前
上官若男应助科研通管家采纳,获得10
10秒前
10秒前
天天快乐应助17采纳,获得10
10秒前
务实青亦完成签到,获得积分10
11秒前
qq发布了新的文献求助10
11秒前
orixero应助ll采纳,获得10
13秒前
麦苗果果发布了新的文献求助30
13秒前
非而者厚应助加贝采纳,获得10
13秒前
14秒前
2799完成签到,获得积分10
14秒前
14秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Animal Physiology 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3745114
求助须知:如何正确求助?哪些是违规求助? 3288017
关于积分的说明 10057088
捐赠科研通 3004221
什么是DOI,文献DOI怎么找? 1649626
邀请新用户注册赠送积分活动 785428
科研通“疑难数据库(出版商)”最低求助积分说明 751077