Gas–Liquid Two-Phase Performance of Centrifugal Pump Under Bubble Inflow Based on Computational Fluid Dynamics–Population Balance Model Coupling Model

机械 计算流体力学 离心泵 叶轮 流入 气泡 湍流 转速 人口 流体体积法 体积流量 材料科学 流量(数学) 物理 工程类 机械工程 人口学 社会学
作者
Denghui He,Zhenguo Ge,Bofeng Bai,Pengcheng Guo,Xingqi Luo
出处
期刊:Journal of Fluids Engineering-transactions of The Asme [ASME International]
卷期号:142 (8) 被引量:20
标识
DOI:10.1115/1.4047064
摘要

Abstract In this study, a numerical simulation method based on Eulerian–Eulerian model and population balance model (PBM) (i.e., computational fluid dynamics (CFD)–PBM coupling model) was developed to investigate the gas–liquid two-phase performance of centrifugal pump under bubble inflow. The realizable k–ε model turbulence model was implemented in ansysfluent solver. The air and water were employed as the working fluids, which was consistent with the experiment. The water head and pressure increment obtained by the experiment were used to validate the numerical method. The results show that the CFD–PBM coupling model is superior to the Eulerian–Eulerian model, particularly in the “surging” conditions. Using the CFD–PBM coupling model, the influences of parameters, such as inlet gas volume fraction, liquid phase flowrate, and rotational speed, on the head and efficiency of the centrifugal pump were investigated. Under the design condition, when the inlet gas volume fraction increases from 3% to 5%, the bubbles form air mass and stagnate in the impeller channel. The stagnated air mass can hardly be discharged with the liquid phase. Thus, the pump head drops suddenly, i.e., the surging occurs. The two-phase performance of centrifugal pump can be improved under the surging condition by increasing the liquid flowrate and the rotational speed to a certain value. The results contribute to an alternative simulation method to investigate the characteristics of bubble flow in pump and shed new lights on the understanding of the performance of centrifugal pumps under two-phase flow conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pqy发布了新的文献求助10
刚刚
脆脆鲨完成签到,获得积分10
1秒前
1秒前
文安完成签到,获得积分10
1秒前
微笑如冰完成签到,获得积分10
2秒前
luo给luo的求助进行了留言
2秒前
晨曦发布了新的文献求助10
2秒前
2秒前
大方小白发布了新的文献求助10
2秒前
细腻沅发布了新的文献求助10
2秒前
科研通AI5应助FFF采纳,获得10
3秒前
3秒前
茉莉完成签到,获得积分10
3秒前
今今发布了新的文献求助10
4秒前
追寻的筝发布了新的文献求助10
4秒前
请叫我风吹麦浪应助Ll采纳,获得10
4秒前
Keming完成签到,获得积分10
4秒前
害羞聋五发布了新的文献求助10
5秒前
tulip发布了新的文献求助10
5秒前
5秒前
5秒前
嘟嘟发布了新的文献求助10
5秒前
6秒前
苏照杭应助jym采纳,获得10
6秒前
6秒前
6秒前
眼睛大又蓝完成签到,获得积分10
6秒前
kangkang完成签到,获得积分10
6秒前
7秒前
7秒前
绵绵完成签到,获得积分10
7秒前
8秒前
Mlwwq完成签到,获得积分10
8秒前
8秒前
小皮蛋儿完成签到,获得积分10
8秒前
lyn发布了新的文献求助10
8秒前
JUSTs0so完成签到,获得积分10
9秒前
失联者完成签到,获得积分10
9秒前
感性的神级完成签到,获得积分10
9秒前
眯眯眼的谷冬完成签到 ,获得积分10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762