Lichtenberg algorithm: A novel hybrid physics-based meta-heuristic for global optimization

计算机科学 元启发式 算法 非线性系统 稳健性(进化) 数学优化 数学 生物化学 量子力学 基因 物理 化学
作者
João Luiz Junho Pereira,Matheus Brendon Francisco,Camila Aparecida Diniz,Guilherme Antônio Oliver,Sebastião Simões Cunha,Guilherme Ferreira Gomes
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:170: 114522-114522 被引量:154
标识
DOI:10.1016/j.eswa.2020.114522
摘要

Abstract This paper proposes a novel global optimization algorithm called Lichtenberg Algorithm (LA), inspired by the Lichtenberg figures patterns. Optimization is an essential tool to minimize or maximize functions, obtaining optimal results on costs, mass, energy, gains, among others. Actual problems may be multimodal, nonlinear, and discontinuous and may not be minimized by classical analytical methods that depend on the gradient. In this context there are metaheuristics algorithms inspired by natural phenomena to optimize real problems. There is no algorithm that is the worst or the best, but more efficient for a given type of problem. Thus, an unprecedented metaheuristic algorithm was created inspired by the physical phenomenon of radial intra-cloud lightning and Lichtenberg figures, successfully exploiting the fractal power and it is different from many in the literature as it is a hybrid algorithm composed of methods of search based on population and trajectory. Several test functions, including a design problem in a welded beam, were used to verify the robustness and to validate the Lichtenberg Algorithm. In all cases, the results were satisfactory when compared to those in the literature. LA shown to be a powerful optimization tool for both unconstraint optimizations and real problems with linear and nonlinear constraints.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ice_cream完成签到,获得积分10
刚刚
刚刚
愛研究完成签到,获得积分10
1秒前
小马甲应助要减肥丸子采纳,获得10
2秒前
合适耳机完成签到,获得积分20
2秒前
3秒前
4秒前
5秒前
ice_cream发布了新的文献求助10
5秒前
1111完成签到,获得积分10
6秒前
JamesPei应助赤金之上采纳,获得10
6秒前
黄花菜完成签到 ,获得积分10
6秒前
7秒前
谷粱夏山发布了新的文献求助10
7秒前
赘婿应助21采纳,获得10
7秒前
木叶完成签到,获得积分20
7秒前
Promise发布了新的文献求助10
8秒前
圆圆发布了新的文献求助10
8秒前
卡卡完成签到,获得积分10
8秒前
清风完成签到 ,获得积分10
8秒前
9秒前
M2106完成签到,获得积分10
9秒前
mindy发布了新的文献求助10
9秒前
10秒前
April完成签到,获得积分10
10秒前
烟花应助木叶采纳,获得10
10秒前
12333发布了新的文献求助10
11秒前
大个应助易玉燕采纳,获得10
11秒前
行璐怡完成签到,获得积分10
12秒前
12秒前
lalala应助圆圆采纳,获得20
12秒前
14秒前
zmuzhang2019完成签到,获得积分10
14秒前
15秒前
暮霭沉沉应助科研小肖采纳,获得20
15秒前
顾矜应助123采纳,获得30
16秒前
星星完成签到,获得积分10
16秒前
充电宝应助科研通管家采纳,获得10
16秒前
16秒前
BareBear应助科研通管家采纳,获得10
16秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
ANSYS Workbench基础教程与实例详解 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3311803
求助须知:如何正确求助?哪些是违规求助? 2944667
关于积分的说明 8520265
捐赠科研通 2620195
什么是DOI,文献DOI怎么找? 1432715
科研通“疑难数据库(出版商)”最低求助积分说明 664756
邀请新用户注册赠送积分活动 650039