Identification of Genuine and Adulterated Pinellia ternata by Mid-Infrared (MIR) and Near-Infrared (NIR) Spectroscopy with Partial Least Squares - Discriminant Analysis (PLS-DA)

半夏 偏最小二乘回归 化学计量学 化学 线性判别分析 近红外光谱 分析化学(期刊) 模式识别(心理学) 人工智能 色谱法 数学 统计 物理 计算机科学 光学 病理 医学 中医药 替代医学
作者
Fei Sun,Yu Chen,Kai-Yang Wang,Shumei Wang,Shengwang Liang
出处
期刊:Analytical Letters [Informa]
卷期号:53 (6): 937-959 被引量:17
标识
DOI:10.1080/00032719.2019.1687507
摘要

Spectroscopy techniques are powerful tools for the rapid identification of traditional Chinese medicine because they provide chemical information with no sample preparation. In this study, a rapid and reliable approach was proposed to differentiate Pinellia ternata from adulterated P. ternata, processed P. ternata, and adulterated processed P. ternata by mid-infrared (MIR) and near-infrared (NIR) spectroscopy coupled with a partial least squares-discriminant analysis (PLS-DA) algorithm. One-hundred sixty-five batches of P. ternata, adulterated P. ternata, processed P. ternata, and adulterated processed P. ternata samples were collected and prepared. All of the samples were characterized by MIR and NIR spectra. The PLS-DA was first applied to build the discriminant model on the individual data matrices. Next, the data matrices coming from MIR and NIR spectra were fused at the low-level and mid-level, and PLS-DA models were built on the fused data. The classification accuracy, sensitivity, and specificity were calculated to evaluate the PLS-DA models. The results showed the use of mid-level fusion strategy, in particular, integrating latent variables from different spectral data matrices, allowed the correct discrimination of all samples in the training and testing sets. In the case of mid-level fusion with latent variables, the accuracy of the PLS-DA model was 100%, and the sensitivity and specificity of the PLS-DA model were all 1. The present discriminant model can be successful to differentiate P. ternata from adulterated P. ternata, processed P. ternata, and adulterated processed P. ternata. This study first provides a new path for the quality control of P. ternata.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cookie发布了新的文献求助10
1秒前
Karol发布了新的文献求助10
1秒前
1秒前
单薄的嵩发布了新的文献求助10
1秒前
拼搏的凌翠完成签到,获得积分10
2秒前
叫我益达完成签到,获得积分10
2秒前
2秒前
2秒前
刘坦苇发布了新的文献求助10
3秒前
风时因絮发布了新的文献求助10
3秒前
ding应助ihuhiu采纳,获得10
4秒前
嗨害发布了新的文献求助10
4秒前
6秒前
7秒前
7秒前
小鹅完成签到,获得积分10
8秒前
庾芯发布了新的文献求助10
9秒前
cocolu应助朱小小采纳,获得10
10秒前
10秒前
10秒前
无花果应助白糖采纳,获得10
11秒前
刘坦苇发布了新的文献求助10
12秒前
12秒前
13秒前
情怀应助lbgbox采纳,获得10
15秒前
15秒前
16秒前
庾芯完成签到,获得积分10
16秒前
江流有声发布了新的文献求助10
16秒前
好e完成签到,获得积分10
16秒前
16秒前
杳鸢应助积极的幼珊采纳,获得10
16秒前
jyp111应助想混核心研一版采纳,获得20
17秒前
英俊的铭应助冰9999采纳,获得10
17秒前
17秒前
Hello应助大砍刀采纳,获得30
20秒前
20秒前
刘坦苇发布了新的文献求助10
20秒前
哭泣雅绿发布了新的文献求助10
22秒前
jackbauer发布了新的文献求助10
22秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3459437
求助须知:如何正确求助?哪些是违规求助? 3053861
关于积分的说明 9039026
捐赠科研通 2743219
什么是DOI,文献DOI怎么找? 1504698
科研通“疑难数据库(出版商)”最低求助积分说明 695389
邀请新用户注册赠送积分活动 694664