Improved Sampling Strategies for Protein Model Refinement Based on Molecular Dynamics Simulation.

计算机科学 统计物理学 伞式取样 采样(信号处理) 蒙特卡罗方法 能源景观
作者
Lim Heo,Collin F. Arbour,Giacomo Janson,Michael Feig
出处
期刊:Journal of Chemical Theory and Computation [American Chemical Society]
卷期号:17 (3): 1931-1943 被引量:8
标识
DOI:10.1021/acs.jctc.0c01238
摘要

Protein structures provide valuable information for understanding biological processes. Protein structures can be determined by experimental methods such as X-ray crystallography, nuclear magnetic resonance spectroscopy, or cryogenic electron microscopy. As an alternative, in silico methods can be used to predict protein structures. These methods utilize protein structure databases for structure prediction via template-based modeling or for training machine-learning models to generate predictions. Structure prediction for proteins distant from proteins with known structures often results in lower accuracy with respect to the true physiological structures. Physics-based protein model refinement methods can be applied to improve model accuracy in the predicted models. Refinement methods rely on conformational sampling around the predicted structures, and if structures closer to the native states are sampled, improvements in the model quality become possible. Molecular dynamics simulations have been especially successful for improving model qualities but although consistent refinement can be achieved, the improvements in model qualities are still moderate. To extend the refinement performance of a simulation-based protocol, we explored new schemes that focus on optimized use of biasing functions and the application of increased simulation temperatures. In addition, we tested the use of alternative initial models so that the simulations can explore the conformational space more broadly. Based on the insights of this analysis, we are proposing a new refinement protocol that significantly outperformed previous state-of-the-art molecular dynamics simulation-based protocols in the benchmark tests described here.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健应助王磊采纳,获得10
刚刚
兮沐完成签到,获得积分20
刚刚
莫问发布了新的文献求助10
刚刚
稀里糊涂完成签到 ,获得积分10
1秒前
pharmstudent发布了新的文献求助30
4秒前
取名叫做利完成签到,获得积分10
4秒前
搜集达人应助兮沐采纳,获得10
5秒前
6秒前
勤恳白秋完成签到,获得积分10
7秒前
8秒前
稳重傲柔应助过时的砖头采纳,获得10
8秒前
8秒前
莫问完成签到,获得积分20
9秒前
11秒前
11秒前
zzzy发布了新的文献求助10
11秒前
自然含羞草完成签到,获得积分10
11秒前
11秒前
12秒前
yuan完成签到 ,获得积分10
12秒前
12秒前
机灵白桃发布了新的文献求助10
12秒前
隐形曼青应助科研小白鼠采纳,获得10
13秒前
shezhinicheng发布了新的文献求助10
14秒前
啊嘞嘞完成签到,获得积分10
15秒前
熊22发布了新的文献求助10
16秒前
16秒前
梁译木发布了新的文献求助10
17秒前
18秒前
充电宝应助英勇代荷采纳,获得10
19秒前
yuan关注了科研通微信公众号
22秒前
22秒前
大模型应助智慧女孩采纳,获得10
23秒前
爱唱歌的yu仔完成签到,获得积分10
23秒前
23秒前
和谐幻丝发布了新的文献求助10
23秒前
955完成签到,获得积分10
24秒前
orixero应助kgf采纳,获得10
25秒前
英姑应助机灵白桃采纳,获得10
26秒前
美满的冷雁完成签到,获得积分10
26秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
The Moiseyev Dance Company Tours America: "Wholesome" Comfort during a Cold War 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979916
求助须知:如何正确求助?哪些是违规求助? 3524030
关于积分的说明 11219577
捐赠科研通 3261464
什么是DOI,文献DOI怎么找? 1800674
邀请新用户注册赠送积分活动 879241
科研通“疑难数据库(出版商)”最低求助积分说明 807226