Improved Sampling Strategies for Protein Model Refinement Based on Molecular Dynamics Simulation.

计算机科学 统计物理学 伞式取样 采样(信号处理) 蒙特卡罗方法 能源景观
作者
Lim Heo,Collin F. Arbour,Giacomo Janson,Michael Feig
出处
期刊:Journal of Chemical Theory and Computation [American Chemical Society]
卷期号:17 (3): 1931-1943 被引量:8
标识
DOI:10.1021/acs.jctc.0c01238
摘要

Protein structures provide valuable information for understanding biological processes. Protein structures can be determined by experimental methods such as X-ray crystallography, nuclear magnetic resonance spectroscopy, or cryogenic electron microscopy. As an alternative, in silico methods can be used to predict protein structures. These methods utilize protein structure databases for structure prediction via template-based modeling or for training machine-learning models to generate predictions. Structure prediction for proteins distant from proteins with known structures often results in lower accuracy with respect to the true physiological structures. Physics-based protein model refinement methods can be applied to improve model accuracy in the predicted models. Refinement methods rely on conformational sampling around the predicted structures, and if structures closer to the native states are sampled, improvements in the model quality become possible. Molecular dynamics simulations have been especially successful for improving model qualities but although consistent refinement can be achieved, the improvements in model qualities are still moderate. To extend the refinement performance of a simulation-based protocol, we explored new schemes that focus on optimized use of biasing functions and the application of increased simulation temperatures. In addition, we tested the use of alternative initial models so that the simulations can explore the conformational space more broadly. Based on the insights of this analysis, we are proposing a new refinement protocol that significantly outperformed previous state-of-the-art molecular dynamics simulation-based protocols in the benchmark tests described here.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
SciGPT应助云上人采纳,获得10
1秒前
2秒前
打打应助超帅书文采纳,获得10
2秒前
2秒前
2秒前
3秒前
dl完成签到,获得积分20
3秒前
龙玄泽应助alan采纳,获得10
3秒前
yangyajie发布了新的文献求助10
3秒前
打打应助wr采纳,获得10
3秒前
mmyhn给xiaoziqing1的求助进行了留言
3秒前
4秒前
金jin发布了新的文献求助10
4秒前
dwhnx完成签到,获得积分10
4秒前
CipherSage应助Amie采纳,获得10
5秒前
长江长发布了新的文献求助10
5秒前
李浅墨发布了新的文献求助10
5秒前
6秒前
6秒前
NexusExplorer应助星海梦幻采纳,获得10
6秒前
zcc111发布了新的文献求助10
7秒前
彳亍而行完成签到,获得积分10
7秒前
英俊的铭应助高高的梦岚采纳,获得10
7秒前
7秒前
8秒前
8秒前
123发布了新的文献求助10
9秒前
9秒前
Jasper应助不i采纳,获得10
9秒前
JEFFREYJIA完成签到,获得积分10
9秒前
9秒前
西侧发布了新的文献求助10
9秒前
bkagyin应助清风采纳,获得10
9秒前
11秒前
彦佳雪完成签到,获得积分20
11秒前
折耳根完成签到 ,获得积分10
11秒前
CipherSage应助sncn采纳,获得10
11秒前
蓝天白云发布了新的文献求助10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Time Matters: On Theory and Method 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3559395
求助须知:如何正确求助?哪些是违规求助? 3134035
关于积分的说明 9405099
捐赠科研通 2834084
什么是DOI,文献DOI怎么找? 1557841
邀请新用户注册赠送积分活动 727741
科研通“疑难数据库(出版商)”最低求助积分说明 716399