光电探测器
紫外线
光电子学
材料科学
带隙
异质结
纳米技术
作者
Xuanhu Chen,Fangfang Ren,Jiandong Ye,Shulin Gu
标识
DOI:10.1088/1361-6641/ab6102
摘要
Gallium oxide (Ga2O3) is an emerging ultrawide bandgap (UWBG) semiconducting material as a key building block for the applications of power electronics, solar blind photodetectors and deep ultraviolet optoelectronics beyond existing technologies. To date, solar-blind photodetectors based on Ga2O3 in the various forms of bulk crystals, epitaxial thin films, nanostructures, and heterostructures have been demonstrated with either high performance or multiple functionalities, however, several remaining challenges require proper solutions for practical applications. In this topic review, we summarized recent advances in processing and device performance of solar photodetectors based on Ga2O3 and the associated physical mechanisms behind according to the architecture of photodetectors. The feasibility of p-type doping, the defect behavior, and radiation effects on the device performance have been discussed. The demonstration of novel and advanced architectures such as phototransistors, highly narrow-band photodetectors, photodetector arrays, and integrated NEMS resonance oscillators for real-time ultraviolet light detection are included. This review may provide better understanding on the optoelectronics properties of the Ga2O3 emerging material to fully exploit its promising optoelectronic applications in deep ultraviolet spectral region.
科研通智能强力驱动
Strongly Powered by AbleSci AI