Multistage GAN for Fabric Defect Detection

计算机科学 分割 人工智能 模式识别(心理学) 图像分割 纹理(宇宙学) 生成对抗网络 计算机视觉 深度学习 图像(数学)
作者
Juhua Liu,Chaoyue Wang,Hai Su,Bo Du,Dacheng Tao
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:29: 3388-3400 被引量:164
标识
DOI:10.1109/tip.2019.2959741
摘要

Fabric defect detection is an intriguing but challenging topic. Many methods have been proposed for fabric defect detection, but these methods are still suboptimal due to the complex diversity of both fabric textures and defects. In this paper, we propose a generative adversarial network (GAN)-based framework for fabric defect detection. Considering existing challenges in real-world applications, the proposed fabric defect detection system is capable of learning existing fabric defect samples and automatically adapting to different fabric textures during different application periods. Specifically, we customize a deep semantic segmentation network for fabric defect detection that can detect different defect types. Furthermore, we attempted to train a multistage GAN to synthesize reasonable defects in new defect-free samples. First, a texture-conditioned GAN is trained to explore the conditional distribution of defects given different texture backgrounds. Given a novel fabric, we aim to generate reasonable defective patches. Then, a GAN-based fusion network fuses the generated defects to specific locations. Finally, the well-trained multistage GAN continuously updates the existing fabric defect datasets and contributes to the fine-tuning of the semantic segmentation network to better detect defects under different conditions. Comprehensive experiments on various representative fabric samples are conducted to verify the detection performance of our proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
6秒前
7秒前
FashionBoy应助咖妃采纳,获得10
8秒前
9秒前
共享精神应助再给次机会采纳,获得10
10秒前
tuyfytjt发布了新的文献求助10
11秒前
wwe发布了新的文献求助10
12秒前
14秒前
隐形曼青应助twob采纳,获得10
15秒前
16秒前
神奇的柜子完成签到,获得积分10
16秒前
背后的秋天完成签到,获得积分10
17秒前
17秒前
17秒前
独特凡松发布了新的文献求助10
21秒前
22秒前
善学以致用应助sam采纳,获得10
22秒前
22秒前
科研通AI2S应助卓霞采纳,获得10
24秒前
淡然的衣发布了新的文献求助10
24秒前
tuyfytjt完成签到,获得积分20
26秒前
124332发布了新的文献求助10
27秒前
咖妃发布了新的文献求助10
28秒前
28秒前
28秒前
红豆面包发布了新的文献求助10
28秒前
willz发布了新的文献求助10
29秒前
小宝发布了新的文献求助10
29秒前
脆脆面发布了新的文献求助10
29秒前
幻想家姬别情完成签到,获得积分10
30秒前
翁复天完成签到,获得积分10
32秒前
PG完成签到 ,获得积分10
33秒前
33秒前
34秒前
twob发布了新的文献求助10
35秒前
顾矜应助科研通管家采纳,获得10
35秒前
科研通AI2S应助科研通管家采纳,获得10
35秒前
我是老大应助科研通管家采纳,获得10
35秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3268326
求助须知:如何正确求助?哪些是违规求助? 2907891
关于积分的说明 8343566
捐赠科研通 2578191
什么是DOI,文献DOI怎么找? 1401760
科研通“疑难数据库(出版商)”最低求助积分说明 655191
邀请新用户注册赠送积分活动 634309