材料科学
法拉第效率
电化学
催化作用
二氧化碳电化学还原
密度泛函理论
碳纤维
碳纳米管
电催化剂
Atom(片上系统)
化学工程
纳米技术
物理化学
电极
计算化学
一氧化碳
有机化学
复合材料
化学
工程类
复合数
嵌入式系统
计算机科学
作者
Qun Fan,Pengfei Hou,Changhyeok Choi,Tai‐Sing Wu,Song Hong,Fang Li,Y. L. Soo,Peng Kang,Yousung Jung,Zhenyu Sun
标识
DOI:10.1002/aenm.201903068
摘要
Abstract Electrochemical reduction of carbon dioxide (CO 2 ) to fuels and value‐added industrial chemicals is a promising strategy for keeping a healthy balance between energy supply and net carbon emissions. Here, the facile transformation of residual Ni particle catalysts in carbon nanotubes into thermally stable single Ni atoms with a possible NiN 3 moiety is reported, surrounded with a porous N‐doped carbon sheath through a one‐step nanoconfined pyrolysis strategy. These structural changes are confirmed by X‐ray absorption fine structure analysis and density functional theory (DFT) calculations. The dispersed Ni single atoms facilitate highly efficient electrocatalytic CO 2 reduction at low overpotentials to yield CO, providing a CO faradaic efficiency exceeding 90%, turnover frequency approaching 12 000 h −1 , and metal mass activity reaching about 10 600 mA mg −1 , outperforming current state‐of‐the‐art single atom catalysts for CO 2 reduction to CO. DFT calculations suggest that the Ni@N 3 (pyrrolic) site favors *COOH formation with lower free energy than Ni@N 4 , in addition to exothermic CO desorption, hence enhancing electrocatalytic CO 2 conversion. This finding provides a simple, scalable, and promising route for the preparation of low‐cost, abundant, and highly active single atom catalysts, benefiting future practical CO 2 electrolysis.
科研通智能强力驱动
Strongly Powered by AbleSci AI