中国仓鼠卵巢细胞
转座因子
生物
抗体
效价
卵巢
抗体效价
分子生物学
细胞培养
突变体
遗传学
基因
作者
Yashas Rajendra,Robert B. Peery,Gavin C. Barnard
摘要
Chinese hamster ovary (CHO) cells remain the default production host for many biopharmaceutical drugs, particularly monoclonal antibodies (mAb). Production of gram and kilogram quantities of protein typically requires the generation of stable CHO clones. Unfortunately, this process takes several months, significantly slowing down the drug discovery and development process. Therefore, improved technologies are needed to accelerate biopharmaceutical drug discovery and final drug substance manufacturing. In this study, we describe the generation of stable CHO pools using the piggyBac transposon system. We evaluated the system using four model antibody molecules (3 mAbs and 1 bispecific Ab). Stable CHO pools were isolated in 7-12 days. Using a simple 16-day fed-batch process, we measured titers ranging from 2.3 to 7.6 g/L for the four model antibodies. This represented a 4- to 12-fold increase relative to the controls. Additionally, we isolated stable CHO clones. We found that the stable CHO clones isolated from the piggyBac transposon pools yielded titers two to threefold higher relative to the control clones. Taken together, these results suggest that stable CHO pool and clone generation can be significantly improved by using the piggyBac transposon system. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1301-1307, 2016.
科研通智能强力驱动
Strongly Powered by AbleSci AI