鲁比斯科
光合作用
硝酸还原酶
氮气
天蓬
植物
氮气循环
氮同化
生物
光合能力
叶绿素
农学
园艺
硝酸盐
化学
生态学
有机化学
作者
Nan Liu,Shuhua Wu,Qinfeng Guo,Jiaxin Wang,Ce Cao,Wang Jun
标识
DOI:10.1016/j.scitotenv.2018.05.060
摘要
Global increases in nitrogen deposition may alter forest structure and function by interfering with plant nitrogen metabolism (e.g., assimilation and partitioning) and subsequent carbon assimilation, but it is unclear how these responses to nitrogen deposition differ among species. In this study, we conducted a 2-year experiment to investigate the effects of canopy addition of nitrogen (CAN) on leaf nitrogen assimilation and partitioning in three subtropical forest plants (Castanea henryi, Ardisia quinquegona, and Blastus cochinchinensis). We hypothesized that responses of leaf nitrogen assimilation and partitioning to CAN differ among subtropical forest plants. CAN increased leaf nitrate reductase (NR) activity, and leaf nitrogen and chlorophyll contents but reduced leaf maximum photosynthetic rate (Amax), photosynthetic nitrogen use efficiency (PNUE), ribulose-1,5-bisphosphate carboxylase (Rubisco) activity, and metabolic protein content of an overstory tree species C. henryi. In an understory tree A. quinquegona, CAN increased NR activity and glutamine synthetase activity and therefore increased metabolic protein synthesis (e.g., Rubisco) in leaves. In the shrub B. cochinchinensis, CAN increased Amax, PNUE, Rubisco content, metabolic protein content, and Rubisco activity in leaves. Leaf nitrogen assimilation and partitioning results indicated that A. quinquegona and B. cochinchinensis may better acclimate to CAN than C. henryi and that the acclimation mechanism differs among the species. Results from this study suggest that long-term elevated atmospheric nitrogen deposition has contributed to the ongoing transformation of subtropical forests into communities dominated by small trees and shrubs.
科研通智能强力驱动
Strongly Powered by AbleSci AI