亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Automatic tumor segmentation in breast ultrasound images using a dilated fully convolutional network combined with an active contour model

人工智能 分割 计算机科学 豪斯多夫距离 乳腺超声检查 卷积神经网络 活动轮廓模型 支持向量机 像素 图像分割 残余物 规范化(社会学) 矢量流 深度学习 模式识别(心理学) 乳腺摄影术 乳腺癌 计算机视觉 医学 癌症 算法 内科学 社会学 人类学
作者
Yuzhou Hu,Yi Guo,Yuanyuan Wang,Jinhua Yu,Jiawei Li,Shichong Zhou,Cai Chang
出处
期刊:Medical Physics [Wiley]
卷期号:46 (1): 215-228 被引量:152
标识
DOI:10.1002/mp.13268
摘要

Due to the low contrast, blurry boundaries, and large amount of shadows in breast ultrasound (BUS) images, automatic tumor segmentation remains a challenging task. Deep learning provides a solution to this problem, since it can effectively extract representative features from lesions and the background in BUS images.A novel automatic tumor segmentation method is proposed by combining a dilated fully convolutional network (DFCN) with a phase-based active contour (PBAC) model. The DFCN is an improved fully convolutional neural network with dilated convolution in deeper layers, fewer parameters, and batch normalization techniques; and has a large receptive field that can separate tumors from background. The predictions made by the DFCN are relatively rough due to blurry boundaries and variations in tumor sizes; thus, the PBAC model, which adds both region-based and phase-based energy functions, is applied to further improve segmentation results. The DFCN model is trained and tested in dataset 1 which contains 570 BUS images from 89 patients. In dataset 2, a 10-fold support vector machine (SVM) classifier is employed to verify the diagnostic ability using 460 features extracted from the segmentation results of the proposed method.Advantages of the present method were compared with three state-of-the-art networks; the FCN-8s, U-net, and dilated residual network (DRN). Experimental results from 170 BUS images show that the proposed method had a Dice Similarity coefficient of 88.97 ± 10.01%, a Hausdorff distance (HD) of 35.54 ± 29.70 pixels, and a mean absolute deviation (MAD) of 7.67 ± 6.67 pixels, which showed the best segmentation performance. In dataset 2, the area under curve (AUC) of the 10-fold SVM classifier was 0.795 which is similar to the classification using the manual segmentation results.The proposed automatic method may be sufficiently accurate, robust, and efficient for medical ultrasound applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
12秒前
共享精神应助Marciu33采纳,获得10
17秒前
25秒前
26秒前
量子星尘发布了新的文献求助10
27秒前
葛力发布了新的文献求助10
49秒前
Zarc完成签到,获得积分10
1分钟前
1分钟前
1分钟前
发财小鱼完成签到 ,获得积分10
1分钟前
1分钟前
科研通AI2S应助农夫采纳,获得10
1分钟前
葛力发布了新的文献求助10
1分钟前
开心寄松发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
SciGPT应助余甘木采纳,获得10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
圆圆完成签到 ,获得积分10
2分钟前
美罗培南完成签到,获得积分10
2分钟前
烨枫晨曦完成签到,获得积分10
2分钟前
AliEmbark完成签到,获得积分10
2分钟前
xy完成签到 ,获得积分10
2分钟前
葛力发布了新的文献求助10
2分钟前
2分钟前
活力的驳发布了新的文献求助10
2分钟前
传奇3应助活力的驳采纳,获得30
3分钟前
无花果应助暮光的加纳采纳,获得10
3分钟前
好烦完成签到,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
余甘木发布了新的文献求助10
3分钟前
舒服的吗喽完成签到,获得积分10
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
lei发布了新的文献求助10
3分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960064
求助须知:如何正确求助?哪些是违规求助? 3506271
关于积分的说明 11128617
捐赠科研通 3238269
什么是DOI,文献DOI怎么找? 1789671
邀请新用户注册赠送积分活动 871846
科研通“疑难数据库(出版商)”最低求助积分说明 803069