已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Automatic tumor segmentation in breast ultrasound images using a dilated fully convolutional network combined with an active contour model

人工智能 分割 计算机科学 豪斯多夫距离 乳腺超声检查 卷积神经网络 活动轮廓模型 支持向量机 像素 图像分割 残余物 规范化(社会学) 矢量流 深度学习 模式识别(心理学) 乳腺摄影术 乳腺癌 计算机视觉 医学 癌症 算法 内科学 社会学 人类学
作者
Yuzhou Hu,Yi Guo,Yuanyuan Wang,Jinhua Yu,Jiawei Li,Shichong Zhou,Cai Chang
出处
期刊:Medical Physics [Wiley]
卷期号:46 (1): 215-228 被引量:152
标识
DOI:10.1002/mp.13268
摘要

Due to the low contrast, blurry boundaries, and large amount of shadows in breast ultrasound (BUS) images, automatic tumor segmentation remains a challenging task. Deep learning provides a solution to this problem, since it can effectively extract representative features from lesions and the background in BUS images.A novel automatic tumor segmentation method is proposed by combining a dilated fully convolutional network (DFCN) with a phase-based active contour (PBAC) model. The DFCN is an improved fully convolutional neural network with dilated convolution in deeper layers, fewer parameters, and batch normalization techniques; and has a large receptive field that can separate tumors from background. The predictions made by the DFCN are relatively rough due to blurry boundaries and variations in tumor sizes; thus, the PBAC model, which adds both region-based and phase-based energy functions, is applied to further improve segmentation results. The DFCN model is trained and tested in dataset 1 which contains 570 BUS images from 89 patients. In dataset 2, a 10-fold support vector machine (SVM) classifier is employed to verify the diagnostic ability using 460 features extracted from the segmentation results of the proposed method.Advantages of the present method were compared with three state-of-the-art networks; the FCN-8s, U-net, and dilated residual network (DRN). Experimental results from 170 BUS images show that the proposed method had a Dice Similarity coefficient of 88.97 ± 10.01%, a Hausdorff distance (HD) of 35.54 ± 29.70 pixels, and a mean absolute deviation (MAD) of 7.67 ± 6.67 pixels, which showed the best segmentation performance. In dataset 2, the area under curve (AUC) of the 10-fold SVM classifier was 0.795 which is similar to the classification using the manual segmentation results.The proposed automatic method may be sufficiently accurate, robust, and efficient for medical ultrasound applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助Nana采纳,获得10
1秒前
年轻冰萍完成签到,获得积分10
1秒前
照桥心美发布了新的文献求助10
4秒前
4秒前
妮妮完成签到,获得积分10
5秒前
5秒前
6秒前
范白容完成签到 ,获得积分10
6秒前
yizhilaohuli完成签到,获得积分10
7秒前
Persist6578完成签到 ,获得积分10
7秒前
111发布了新的文献求助10
8秒前
骆十八完成签到,获得积分10
8秒前
nizam发布了新的文献求助10
8秒前
健壮保温杯完成签到,获得积分10
9秒前
妮妮发布了新的文献求助10
9秒前
9秒前
龙之灵发布了新的文献求助10
10秒前
不鸭完成签到 ,获得积分10
10秒前
Jasper应助Nana采纳,获得10
11秒前
Cc完成签到 ,获得积分10
11秒前
xfq发布了新的文献求助10
12秒前
13秒前
认真谷雪发布了新的文献求助10
14秒前
木深完成签到,获得积分10
16秒前
18秒前
脆脆鲨完成签到,获得积分10
21秒前
大乐完成签到 ,获得积分10
23秒前
逆天大脚完成签到,获得积分10
24秒前
mmmwwwx完成签到,获得积分10
24秒前
852应助科研通管家采纳,获得10
25秒前
25秒前
可爱的函函应助脆脆鲨采纳,获得20
25秒前
爱看文献的小恐龙完成签到,获得积分10
32秒前
34秒前
天天快乐应助nizam采纳,获得10
34秒前
情怀应助害怕的山兰采纳,获得10
35秒前
姜忆霜完成签到 ,获得积分10
35秒前
kento完成签到,获得积分0
36秒前
认真谷雪完成签到,获得积分20
38秒前
执着月饼完成签到,获得积分20
41秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3307263
求助须知:如何正确求助?哪些是违规求助? 2940973
关于积分的说明 8499935
捐赠科研通 2615205
什么是DOI,文献DOI怎么找? 1428778
科研通“疑难数据库(出版商)”最低求助积分说明 663525
邀请新用户注册赠送积分活动 648382