Automatic tumor segmentation in breast ultrasound images using a dilated fully convolutional network combined with an active contour model

人工智能 分割 计算机科学 豪斯多夫距离 乳腺超声检查 卷积神经网络 活动轮廓模型 支持向量机 像素 图像分割 残余物 规范化(社会学) 矢量流 深度学习 模式识别(心理学) 乳腺摄影术 乳腺癌 计算机视觉 医学 癌症 算法 内科学 社会学 人类学
作者
Yuzhou Hu,Yi Guo,Yuanyuan Wang,Jinhua Yu,Jiawei Li,Shichong Zhou,Cai Chang
出处
期刊:Medical Physics [Wiley]
卷期号:46 (1): 215-228 被引量:170
标识
DOI:10.1002/mp.13268
摘要

Due to the low contrast, blurry boundaries, and large amount of shadows in breast ultrasound (BUS) images, automatic tumor segmentation remains a challenging task. Deep learning provides a solution to this problem, since it can effectively extract representative features from lesions and the background in BUS images.A novel automatic tumor segmentation method is proposed by combining a dilated fully convolutional network (DFCN) with a phase-based active contour (PBAC) model. The DFCN is an improved fully convolutional neural network with dilated convolution in deeper layers, fewer parameters, and batch normalization techniques; and has a large receptive field that can separate tumors from background. The predictions made by the DFCN are relatively rough due to blurry boundaries and variations in tumor sizes; thus, the PBAC model, which adds both region-based and phase-based energy functions, is applied to further improve segmentation results. The DFCN model is trained and tested in dataset 1 which contains 570 BUS images from 89 patients. In dataset 2, a 10-fold support vector machine (SVM) classifier is employed to verify the diagnostic ability using 460 features extracted from the segmentation results of the proposed method.Advantages of the present method were compared with three state-of-the-art networks; the FCN-8s, U-net, and dilated residual network (DRN). Experimental results from 170 BUS images show that the proposed method had a Dice Similarity coefficient of 88.97 ± 10.01%, a Hausdorff distance (HD) of 35.54 ± 29.70 pixels, and a mean absolute deviation (MAD) of 7.67 ± 6.67 pixels, which showed the best segmentation performance. In dataset 2, the area under curve (AUC) of the 10-fold SVM classifier was 0.795 which is similar to the classification using the manual segmentation results.The proposed automatic method may be sufficiently accurate, robust, and efficient for medical ultrasound applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
白山发布了新的文献求助30
刚刚
江楠完成签到,获得积分20
1秒前
1秒前
科学家完成签到,获得积分20
2秒前
悲凉的小馒头完成签到 ,获得积分10
3秒前
3秒前
3秒前
乐乐应助mikiisme采纳,获得30
4秒前
ssxw发布了新的文献求助10
4秒前
4秒前
江楠发布了新的文献求助10
4秒前
4秒前
柠柠发布了新的文献求助10
5秒前
5秒前
5秒前
TRY发布了新的文献求助10
5秒前
安详映阳完成签到 ,获得积分10
6秒前
甾醇完成签到,获得积分20
6秒前
6秒前
8秒前
稳重盼夏发布了新的文献求助10
8秒前
9秒前
gyh完成签到,获得积分10
10秒前
在水一方应助甾醇采纳,获得10
10秒前
深情安青应助不想看文献采纳,获得10
10秒前
渣155136发布了新的文献求助10
10秒前
思源应助开朗的小蘑菇采纳,获得10
12秒前
温柔安筠完成签到,获得积分10
12秒前
a怪完成签到,获得积分10
13秒前
彭于晏应助科研通管家采纳,获得10
13秒前
领导范儿应助科研通管家采纳,获得10
13秒前
领导范儿应助科研通管家采纳,获得10
13秒前
bkagyin应助科研通管家采纳,获得10
13秒前
BareBear应助科研通管家采纳,获得10
14秒前
传奇3应助科研通管家采纳,获得10
14秒前
SciGPT应助科研通管家采纳,获得10
14秒前
CodeCraft应助科研通管家采纳,获得10
14秒前
pcr163应助科研通管家采纳,获得200
14秒前
敏感草丛应助科研通管家采纳,获得10
14秒前
Akim应助科研通管家采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Elements of Evolutionary Genetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5460749
求助须知:如何正确求助?哪些是违规求助? 4565886
关于积分的说明 14301627
捐赠科研通 4491349
什么是DOI,文献DOI怎么找? 2460286
邀请新用户注册赠送积分活动 1449633
关于科研通互助平台的介绍 1425474