A typhoon trajectory prediction model based on multimodal and multitask learning

计算机科学 人工智能 台风 弹道 多任务学习 机器学习 任务(项目管理) 气象学 工程类 天文 物理 系统工程
作者
Wanting Qin,Jun Tang,Cong Da Lu,Songyang Lao
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:122: 108804-108804 被引量:17
标识
DOI:10.1016/j.asoc.2022.108804
摘要

Artificial intelligence technology has been widely used in various fields in recent years. In the case of typhoons, trajectory prediction technology can reduce the loss of human life and property caused by typhoon movements. From the perspective of deep learning , multimodal learning and multitask learning are applied to trajectory prediction. And a trajectory prediction model based on deep multimodal fusion and multitask generation (Trj-DMFMG) is proposed. The model mainly includes two modules: a deep multimodal fusion module and a multitask generation module. The deep multimodal fusion module is composed of several multimodal fusion modules. First, the multimodal trajectory sequence is divided into multiple multimodal subtrajectories by using a sliding window. Then, the multimodal fusion module trains different modal data to perform feature fusion through a long short-term memory network (LSTM) and a 3D convolution neural network (3D CNN). Finally, the features generated by multiple multimode fusion modules are deeply fused. The multitask generation module first trains the deep fusion features generated by the deep multimodal fusion module through the LSTM, then it realizes longitude and latitude prediction at the same time. In this paper, real typhoon data in the Northwest Pacific Ocean are used for simulation experiments. Through a comprehensive comparison of the prediction results in longitude and latitude, it is found that Trj-DMFMG has the best prediction effect and is more accurate and stable in long-term prediction. • Multimodal learning and multitask learning in deep learning technology are applied to typhoon trajectory prediction. • A trajectory prediction model based on deep multimodal fusion and multitask generation (Trj-DMFMG) is proposed. • Feature fusion of multimodal data is realized. Typhoon track data are trained by LSTM, and satellite image data are trained by 3D CNN. • The longitude and latitude are simultaneously predicted by multitask learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助112255采纳,获得10
1秒前
1秒前
1秒前
now完成签到,获得积分10
1秒前
乐乐应助章如豹采纳,获得10
2秒前
科研通AI5应助halabouqii采纳,获得10
2秒前
3秒前
3秒前
脑洞疼应助卡乐瑞咩吹可采纳,获得10
3秒前
NEM嬛嬛驾到完成签到,获得积分10
3秒前
QinQin发布了新的文献求助200
4秒前
零一发布了新的文献求助10
4秒前
4秒前
4秒前
5秒前
5秒前
雪饼发布了新的文献求助10
5秒前
AnasYusuf完成签到,获得积分10
6秒前
7秒前
7秒前
wuxunxun2015发布了新的文献求助10
7秒前
辣比小欣发布了新的文献求助10
8秒前
8秒前
8秒前
天成浩子完成签到,获得积分10
9秒前
Eric发布了新的文献求助30
9秒前
冯劫发布了新的文献求助10
10秒前
大模型应助汎影采纳,获得10
10秒前
11秒前
xu发布了新的文献求助10
11秒前
所所应助文静戎采纳,获得10
11秒前
12秒前
爆米花应助Hah采纳,获得10
13秒前
13秒前
KK完成签到,获得积分10
13秒前
13秒前
13秒前
14秒前
小二郎应助Obliviate采纳,获得50
14秒前
acfun发布了新的文献求助10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3543189
求助须知:如何正确求助?哪些是违规求助? 3120593
关于积分的说明 9343357
捐赠科研通 2818645
什么是DOI,文献DOI怎么找? 1549711
邀请新用户注册赠送积分活动 722221
科研通“疑难数据库(出版商)”最低求助积分说明 713076