计算机科学
人工智能
模式识别(心理学)
冗余(工程)
频道(广播)
过程(计算)
人工神经网络
机器学习
计算机网络
操作系统
作者
Yanfeng Wang,Yinan Chen,Runmin Liu
摘要
With the deepening of deep learning research, progress has been made in artificial intelligence. In the process of aircraft classification, the precision rate of aircraft picture recognition based on traditional methods is low due to various types of aircraft, large similarities between different models, and serious texture interference. In this article, the hybrid attention network model (BA-CNN) to implement an aircraft recognition algorithm is proposed to solve the above problems. Using two-channel ResNet-34 as a characteristic extraction function, the depth of network is increased to improve fine-grained characteristic extraction capability without increasing the output characteristic dimension. In the network to introduce a hybrid attention mechanism, respectively, between the residual units of two ResNet-34 channels, channel attention and spatial attention modules are added, more abundant mixed characteristics of attention are obtained, space and characteristics of the local characteristics of the channel response are focused, the characteristics of redundancy are reduced, and the fine-grained characteristics of learning ability are further enhanced. Trained and tested on FGVC-aircraft, a public fine-grained pictures dataset, the recognition precision rate of the BA-CNN networks model reached 89.2%. It can be seen from the experimental results, the recognition precision rate of the original model is improved effectively by using this method, and the recognition precision rate is higher than most of the existing mainstream aircraft recognition ways.
科研通智能强力驱动
Strongly Powered by AbleSci AI