移动边缘计算
计算机科学
计算卸载
次梯度方法
服务器
分布式计算
资源配置
潜在博弈
边缘计算
资源管理(计算)
利用
博弈论
GSM演进的增强数据速率
移动设备
任务(项目管理)
计算机网络
计算复杂性理论
数学优化
纳什均衡
人工智能
计算机安全
工程类
算法
数学
系统工程
机器学习
经济
微观经济学
操作系统
作者
Xuan‐Qui Pham,Thien Huynh‐The,Eui‐Nam Huh,Dong‐Seong Kim
出处
期刊:IEEE Transactions on Vehicular Technology
[Institute of Electrical and Electronics Engineers]
日期:2022-09-01
卷期号:71 (9): 10220-10225
被引量:9
标识
DOI:10.1109/tvt.2022.3182378
摘要
Parked vehicle-assisted multi-access edge computing (PVMEC) is a paradigm that exploits the under-utilized resources of parked vehicles (PVs) to assist MEC servers for offloaded task execution. This article investigates a partial offloading strategy for multi-user PVMEC, where each mobile device (MD)’s task can be partially offloaded to the MEC server or a nearby PV. We formulate the system utility maximization problem with joint consideration of offloading decisions, offloading ratio, and resource allocation. Considering the complexity and privacy issues of centralized scheme as well as the inherent resource contention among MDs, we adopt game-theoretic approach to devise a low-complexity distributed offloading scheme, in which the offloading decision-making problem is modeled as an exact potential game, and the optimal offloading ratio and resource allocation are determined using a subgradient method. Finally, simulation results show that our proposed approach can significantly improve the system utility over traditional baselines.
科研通智能强力驱动
Strongly Powered by AbleSci AI