自噬
细胞生物学
体内
再灌注损伤
缺血
线粒体
心肌细胞
胞浆
生物
化学
内科学
细胞凋亡
医学
生物化学
酶
生物技术
作者
Yanhong Xing,Zhongheng Sui,Yucheng Liu,Mengmeng Wang,Xiangqing Wei,Qixia Lu,Xinyan Wang,Nan Liu,Lu Chen,Rong Chen,Mengmei Wu,Yuqing Wang,Yuhong Zhao,Feng Guo,Jun‐Li Cao,Jiansong Qi,Wuyang Wang
标识
DOI:10.1007/s00395-022-00930-x
摘要
Accumulating evidence suggests that autophagy dysfunction plays a critical role in myocardial ischemia/reperfusion (I/R) injury. However, the underling mechanism of malfunctional autophagy in the cardiomyocytes subjected to I/R has not been well defined. As a result, there is no effective therapeutic option by targeting autophagy to prevent myocardial I/R injury. Here, we used both an in vitro and an in vivo I/R model to monitor autophagic flux in the cardiomyocytes, by exposing neonatal rat ventricular myocytes to hypoxia/reoxygenation and by subjecting mice to I/R, respectively. We observed that the autophagic flux in the cardiomyocytes subjected to I/R was blocked in both in vitro and in vivo models. Down-regulating a lysosomal cationic channel, TRPML1, markedly restored the blocked myocardial autophagic flux induced by I/R, demonstrating that TRPML1 directly contributes to the blocked autophagic flux in the cardiomyocytes subjected to I/R. Mechanistically, TRPML1 is activated secondary to ROS elevation following ischemia/reperfusion, which in turn induces the release of lysosomal zinc into the cytosol and ultimately blocks the autophagic flux in cardiomyocytes, presumably by disrupting the fusion between autophagosomes and lysosomes. As a result, the inhibited myocardial autophagic flux induced by TRPML1 disrupted mitochondria turnover and resulted in mass accumulation of damaged mitochondria and further ROS release, which directly led to cardiomyocyte death. More importantly, pharmacological and genetic inhibition of TRPML1 channels greatly reduced infarct size and rescued heart function in mice subjected to I/R in vivo by restoring impaired myocardial autophagy. In summary, our study demonstrates that secondary to ROS elevation, activation of TRPML1 results in autophagy inhibition in the cardiomyocytes subjected to I/R, which directly leads to cardiomyocyte death by disrupting mitochondria turnover. Therefore, targeting TRPML1 represents a novel therapeutic strategy to protect against myocardial I/R injury.
科研通智能强力驱动
Strongly Powered by AbleSci AI