A Physics-Constrained Data-Driven Workflow for Predicting Coalbed Methane Well Production Using Artificial Neural Network

煤层气 人工神经网络 工作流程 计算机科学 油藏计算 循环神经网络 生产(经济) 地铁列车时刻表 数据挖掘 人工智能 工程类 宏观经济学 操作系统 经济 煤矿开采 废物管理 数据库
作者
Ruiyue Yang,Xiaozhou Qin,Wei Liu,Zhongwei Huang,Yu Shi,Zhaoyu Pang,Yiqun Zhang,Jingbin Li,Tianyu Wang
出处
期刊:Spe Journal [Society of Petroleum Engineers]
卷期号:27 (03): 1531-1552 被引量:41
标识
DOI:10.2118/205903-pa
摘要

Summary Coalbed methane (CBM) has emerged as one of the clean unconventional resources to supplement the rising demand of oil and gas. Analyzing and predicting CBM production performance are critical in choosing the optimal completion methods and parameters. However, the conventional numerical simulation has challenges of complicated gridding issues and expensive computational costs. The huge amount of available production data that has been collected in the field site opens up a new opportunity to develop data-driven approaches in predicting the production rate. Here, we proposed a novel physics-constrained data-driven workflow to effectively forecast the CBM productivity based on a gated recurrent unit (GRU) and multilayer perceptron (MLP) combined neural network (GRU-MLP model). The model architecture is optimized automatically by the multiobjective algorithm: nondominated sorting genetic algorithm Ⅱ (NSGA Ⅱ). The proposed framework was used to predict gas and water production in synthetic cases with various fracture-network-complexity/connectivity and two multistage fractured horizontal wells in field sites located at Ordos Basin and Qinshui Basin, China. The results indicated that the proposed GRU-MLP combined neural network was able to accurately and stably predict the production performance of CBM fractured wells in a fast manner. Compared with recurrent neural network (RNN), GRU, and long short-term memory (LSTM), the proposed GRU-MLP had the highest accuracy, stability, and generalization, especially in the peak or trough and late-time production periods, because it could capture the production-variation trends precisely under the static and dynamic physical constraints. Consequently, a physics-constrained data-driven approach performed better than a pure data-driven method. Moreover, the contributions of constraints affecting the model prediction performance were clarified, which could provide insights for the practicing engineers to choose which categorical constraints are needed to focus on and preferentially treated if there are uncertainties and unknowns in a realistic reservoir. In addition, the optimum GRU-MLP model architecture was a group of optimized solutions, rather than a single solution. Engineers can evaluate the tradeoffs within this optimal set according to the field-site requirements. This study provides a novel machine learning approach based on a GRU-MLP combined neural network to estimate production performances in naturally fractured reservoir. The method is gridless and simple, but is capable of predicting the productivity in a computational cost-effective way. The key findings of this work are expected to provide a theoretical guidance for the intelligent development in oil and gas industry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
后夜完成签到,获得积分10
刚刚
橙熟完成签到,获得积分10
刚刚
刚刚
刚刚
浅眸流年完成签到,获得积分10
1秒前
缥缈的绿兰完成签到,获得积分10
1秒前
差点长成帅哥完成签到,获得积分10
2秒前
找呀找完成签到,获得积分10
2秒前
保奔发布了新的文献求助10
2秒前
2秒前
2秒前
1111完成签到,获得积分10
2秒前
QC完成签到,获得积分10
2秒前
楚明允完成签到 ,获得积分10
3秒前
SciGPT应助bobo采纳,获得10
3秒前
3秒前
完美世界应助ccccd采纳,获得10
3秒前
4秒前
xiaoxiao完成签到,获得积分10
5秒前
SRY发布了新的文献求助10
5秒前
迷了路的猫完成签到,获得积分10
6秒前
烟花应助胡立杰采纳,获得10
6秒前
琂当归完成签到,获得积分10
6秒前
小药丸包饺子应助Oil采纳,获得10
7秒前
刘硕发布了新的文献求助10
7秒前
8秒前
种太阳完成签到 ,获得积分10
8秒前
8秒前
浪子发布了新的文献求助20
8秒前
帅气的机器猫完成签到,获得积分10
8秒前
怕黑的班完成签到,获得积分10
9秒前
蜡笔小新新完成签到,获得积分10
9秒前
10秒前
ykiiii完成签到,获得积分10
12秒前
忙碌的数学人完成签到,获得积分10
12秒前
张玲梅发布了新的文献求助10
12秒前
在水一方应助沉默的尔槐采纳,获得10
13秒前
豆子完成签到,获得积分10
13秒前
DQ完成签到,获得积分10
13秒前
自觉汽车完成签到,获得积分10
13秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
TOWARD A HISTORY OF THE PALEOZOIC ASTEROIDEA (ECHINODERMATA) 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Handbook of Social and Emotional Learning 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5118837
求助须知:如何正确求助?哪些是违规求助? 4324693
关于积分的说明 13473527
捐赠科研通 4157793
什么是DOI,文献DOI怎么找? 2278607
邀请新用户注册赠送积分活动 1280375
关于科研通互助平台的介绍 1219167