A Physics-Constrained Data-Driven Workflow for Predicting Coalbed Methane Well Production Using Artificial Neural Network

煤层气 人工神经网络 工作流程 计算机科学 油藏计算 循环神经网络 生产(经济) 地铁列车时刻表 数据挖掘 人工智能 工程类 宏观经济学 操作系统 经济 煤矿开采 废物管理 数据库
作者
Ruiyue Yang,Xiaozhou Qin,Wei Liu,Zhongwei Huang,Yu Shi,Zhaoyu Pang,Yiqun Zhang,Jingbin Li,Tianyu Wang
出处
期刊:Spe Journal [Society of Petroleum Engineers]
卷期号:27 (03): 1531-1552 被引量:33
标识
DOI:10.2118/205903-pa
摘要

Summary Coalbed methane (CBM) has emerged as one of the clean unconventional resources to supplement the rising demand of oil and gas. Analyzing and predicting CBM production performance are critical in choosing the optimal completion methods and parameters. However, the conventional numerical simulation has challenges of complicated gridding issues and expensive computational costs. The huge amount of available production data that has been collected in the field site opens up a new opportunity to develop data-driven approaches in predicting the production rate. Here, we proposed a novel physics-constrained data-driven workflow to effectively forecast the CBM productivity based on a gated recurrent unit (GRU) and multilayer perceptron (MLP) combined neural network (GRU-MLP model). The model architecture is optimized automatically by the multiobjective algorithm: nondominated sorting genetic algorithm Ⅱ (NSGA Ⅱ). The proposed framework was used to predict gas and water production in synthetic cases with various fracture-network-complexity/connectivity and two multistage fractured horizontal wells in field sites located at Ordos Basin and Qinshui Basin, China. The results indicated that the proposed GRU-MLP combined neural network was able to accurately and stably predict the production performance of CBM fractured wells in a fast manner. Compared with recurrent neural network (RNN), GRU, and long short-term memory (LSTM), the proposed GRU-MLP had the highest accuracy, stability, and generalization, especially in the peak or trough and late-time production periods, because it could capture the production-variation trends precisely under the static and dynamic physical constraints. Consequently, a physics-constrained data-driven approach performed better than a pure data-driven method. Moreover, the contributions of constraints affecting the model prediction performance were clarified, which could provide insights for the practicing engineers to choose which categorical constraints are needed to focus on and preferentially treated if there are uncertainties and unknowns in a realistic reservoir. In addition, the optimum GRU-MLP model architecture was a group of optimized solutions, rather than a single solution. Engineers can evaluate the tradeoffs within this optimal set according to the field-site requirements. This study provides a novel machine learning approach based on a GRU-MLP combined neural network to estimate production performances in naturally fractured reservoir. The method is gridless and simple, but is capable of predicting the productivity in a computational cost-effective way. The key findings of this work are expected to provide a theoretical guidance for the intelligent development in oil and gas industry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助大方的刺猬采纳,获得10
刚刚
Silvanorio完成签到,获得积分10
刚刚
飞飞完成签到,获得积分10
刚刚
彩色的夏瑶完成签到,获得积分10
刚刚
2秒前
TangML完成签到,获得积分10
2秒前
优雅面包完成签到,获得积分10
3秒前
英俊的铭应助braver采纳,获得10
3秒前
cetomacrogol完成签到,获得积分10
3秒前
星星的金子完成签到 ,获得积分10
3秒前
111完成签到,获得积分10
4秒前
鞋子完成签到,获得积分10
4秒前
苦行僧完成签到,获得积分10
5秒前
CX发布了新的文献求助10
5秒前
5秒前
爸爸完成签到,获得积分10
5秒前
拥挤而独行完成签到,获得积分10
6秒前
6秒前
6秒前
7秒前
7秒前
啦啦啦123完成签到,获得积分10
7秒前
zht发布了新的文献求助10
8秒前
情怀应助Queena采纳,获得10
8秒前
8秒前
大梅子清清淡淡完成签到,获得积分10
9秒前
Zozo完成签到,获得积分10
9秒前
杨杨发布了新的文献求助10
9秒前
SSSDDDYYY完成签到,获得积分10
9秒前
李健应助Li采纳,获得10
9秒前
Raymond完成签到,获得积分0
10秒前
10秒前
hx完成签到,获得积分10
10秒前
正直凌文完成签到,获得积分10
10秒前
斯文败类应助Silence采纳,获得10
10秒前
mei完成签到,获得积分10
11秒前
Awei发布了新的文献求助10
11秒前
CX完成签到,获得积分10
11秒前
wisdom完成签到,获得积分10
11秒前
12秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
康复物理因子治疗 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4016195
求助须知:如何正确求助?哪些是违规求助? 3556252
关于积分的说明 11320524
捐赠科研通 3289166
什么是DOI,文献DOI怎么找? 1812411
邀请新用户注册赠送积分活动 887936
科研通“疑难数据库(出版商)”最低求助积分说明 812058