A Physics-Constrained Data-Driven Workflow for Predicting Coalbed Methane Well Production Using Artificial Neural Network

煤层气 人工神经网络 工作流程 计算机科学 油藏计算 循环神经网络 生产(经济) 地铁列车时刻表 数据挖掘 人工智能 工程类 数据库 煤矿开采 经济 宏观经济学 操作系统 废物管理
作者
Ruiyue Yang,Xiaozhou Qin,Wei Liu,Zhongwei Huang,Yu Shi,Zhaoyu Pang,Yiqun Zhang,Jingbin Li,Tianyu Wang
出处
期刊:Spe Journal [Society of Petroleum Engineers]
卷期号:27 (03): 1531-1552 被引量:41
标识
DOI:10.2118/205903-pa
摘要

Summary Coalbed methane (CBM) has emerged as one of the clean unconventional resources to supplement the rising demand of oil and gas. Analyzing and predicting CBM production performance are critical in choosing the optimal completion methods and parameters. However, the conventional numerical simulation has challenges of complicated gridding issues and expensive computational costs. The huge amount of available production data that has been collected in the field site opens up a new opportunity to develop data-driven approaches in predicting the production rate. Here, we proposed a novel physics-constrained data-driven workflow to effectively forecast the CBM productivity based on a gated recurrent unit (GRU) and multilayer perceptron (MLP) combined neural network (GRU-MLP model). The model architecture is optimized automatically by the multiobjective algorithm: nondominated sorting genetic algorithm Ⅱ (NSGA Ⅱ). The proposed framework was used to predict gas and water production in synthetic cases with various fracture-network-complexity/connectivity and two multistage fractured horizontal wells in field sites located at Ordos Basin and Qinshui Basin, China. The results indicated that the proposed GRU-MLP combined neural network was able to accurately and stably predict the production performance of CBM fractured wells in a fast manner. Compared with recurrent neural network (RNN), GRU, and long short-term memory (LSTM), the proposed GRU-MLP had the highest accuracy, stability, and generalization, especially in the peak or trough and late-time production periods, because it could capture the production-variation trends precisely under the static and dynamic physical constraints. Consequently, a physics-constrained data-driven approach performed better than a pure data-driven method. Moreover, the contributions of constraints affecting the model prediction performance were clarified, which could provide insights for the practicing engineers to choose which categorical constraints are needed to focus on and preferentially treated if there are uncertainties and unknowns in a realistic reservoir. In addition, the optimum GRU-MLP model architecture was a group of optimized solutions, rather than a single solution. Engineers can evaluate the tradeoffs within this optimal set according to the field-site requirements. This study provides a novel machine learning approach based on a GRU-MLP combined neural network to estimate production performances in naturally fractured reservoir. The method is gridless and simple, but is capable of predicting the productivity in a computational cost-effective way. The key findings of this work are expected to provide a theoretical guidance for the intelligent development in oil and gas industry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
ilotus完成签到,获得积分10
1秒前
zero完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
健康的雁凡完成签到,获得积分10
2秒前
水月完成签到,获得积分10
2秒前
DrW完成签到,获得积分10
3秒前
起点完成签到,获得积分10
3秒前
nyfz2002完成签到,获得积分20
3秒前
4秒前
学茶小白完成签到,获得积分10
5秒前
456发布了新的文献求助10
5秒前
高高的无颜完成签到,获得积分10
5秒前
Gracie1108关注了科研通微信公众号
6秒前
7秒前
桃子发布了新的文献求助10
7秒前
张渔歌完成签到,获得积分10
8秒前
情怀应助成成成岩浆采纳,获得10
8秒前
赖雅绿完成签到,获得积分0
8秒前
9秒前
江小白完成签到,获得积分0
9秒前
zyq完成签到,获得积分10
9秒前
知性的幼晴应助ZR采纳,获得10
9秒前
落寞乘云完成签到,获得积分10
10秒前
wxliao1234发布了新的文献求助30
10秒前
鱼0306完成签到,获得积分10
10秒前
Yuuuan完成签到 ,获得积分10
10秒前
跳跃太清完成签到 ,获得积分10
12秒前
量子星尘发布了新的文献求助10
13秒前
北落完成签到 ,获得积分10
13秒前
14秒前
dujinjun完成签到,获得积分10
14秒前
minnom完成签到 ,获得积分10
15秒前
闪闪新梅完成签到,获得积分10
16秒前
文献狂人完成签到,获得积分10
17秒前
robin_1217完成签到,获得积分10
18秒前
江山完成签到,获得积分10
19秒前
我是老大应助zhang采纳,获得10
19秒前
航某人完成签到,获得积分10
19秒前
林勇德完成签到,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5773550
求助须知:如何正确求助?哪些是违规求助? 5612386
关于积分的说明 15431598
捐赠科研通 4906002
什么是DOI,文献DOI怎么找? 2640012
邀请新用户注册赠送积分活动 1587860
关于科研通互助平台的介绍 1542922