A Physics-Constrained Data-Driven Workflow for Predicting Coalbed Methane Well Production Using Artificial Neural Network

煤层气 人工神经网络 工作流程 计算机科学 油藏计算 循环神经网络 生产(经济) 地铁列车时刻表 数据挖掘 人工智能 工程类 宏观经济学 操作系统 经济 煤矿开采 废物管理 数据库
作者
Ruiyue Yang,Xiaozhou Qin,Wei Liu,Zhongwei Huang,Yu Shi,Zhanxi Pang,Yiqun Zhang,Jingbin Li,Tianyu Wang
出处
期刊:Spe Journal [Society of Petroleum Engineers]
卷期号:27 (03): 1531-1552 被引量:24
标识
DOI:10.2118/205903-pa
摘要

Summary Coalbed methane (CBM) has emerged as one of the clean unconventional resources to supplement the rising demand of oil and gas. Analyzing and predicting CBM production performance are critical in choosing the optimal completion methods and parameters. However, the conventional numerical simulation has challenges of complicated gridding issues and expensive computational costs. The huge amount of available production data that has been collected in the field site opens up a new opportunity to develop data-driven approaches in predicting the production rate. Here, we proposed a novel physics-constrained data-driven workflow to effectively forecast the CBM productivity based on a gated recurrent unit (GRU) and multilayer perceptron (MLP) combined neural network (GRU-MLP model). The model architecture is optimized automatically by the multiobjective algorithm: nondominated sorting genetic algorithm Ⅱ (NSGA Ⅱ). The proposed framework was used to predict gas and water production in synthetic cases with various fracture-network-complexity/connectivity and two multistage fractured horizontal wells in field sites located at Ordos Basin and Qinshui Basin, China. The results indicated that the proposed GRU-MLP combined neural network was able to accurately and stably predict the production performance of CBM fractured wells in a fast manner. Compared with recurrent neural network (RNN), GRU, and long short-term memory (LSTM), the proposed GRU-MLP had the highest accuracy, stability, and generalization, especially in the peak or trough and late-time production periods, because it could capture the production-variation trends precisely under the static and dynamic physical constraints. Consequently, a physics-constrained data-driven approach performed better than a pure data-driven method. Moreover, the contributions of constraints affecting the model prediction performance were clarified, which could provide insights for the practicing engineers to choose which categorical constraints are needed to focus on and preferentially treated if there are uncertainties and unknowns in a realistic reservoir. In addition, the optimum GRU-MLP model architecture was a group of optimized solutions, rather than a single solution. Engineers can evaluate the tradeoffs within this optimal set according to the field-site requirements. This study provides a novel machine learning approach based on a GRU-MLP combined neural network to estimate production performances in naturally fractured reservoir. The method is gridless and simple, but is capable of predicting the productivity in a computational cost-effective way. The key findings of this work are expected to provide a theoretical guidance for the intelligent development in oil and gas industry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李爱国应助坚强幼晴采纳,获得10
2秒前
直率无春完成签到,获得积分10
2秒前
孺子发布了新的文献求助10
3秒前
samuel发布了新的文献求助10
4秒前
4秒前
傻芙芙的完成签到,获得积分10
8秒前
HEHNJJ完成签到 ,获得积分10
10秒前
lili完成签到,获得积分10
10秒前
fei完成签到,获得积分10
13秒前
13秒前
诸青梦完成签到 ,获得积分10
14秒前
天天快乐应助孺子采纳,获得10
14秒前
诱阙寰完成签到,获得积分10
19秒前
小二郎应助psy采纳,获得10
20秒前
CodeCraft应助科研通管家采纳,获得30
22秒前
汉堡包应助科研通管家采纳,获得10
22秒前
starofjlu应助科研通管家采纳,获得30
22秒前
李健应助科研通管家采纳,获得10
22秒前
脑洞疼应助科研通管家采纳,获得10
22秒前
22秒前
日月完成签到,获得积分10
24秒前
余鹰完成签到,获得积分10
24秒前
27秒前
好甜口完成签到,获得积分10
27秒前
须眉交白完成签到,获得积分10
30秒前
Ghostghost完成签到,获得积分10
30秒前
31秒前
迷路的沛芹完成签到 ,获得积分10
33秒前
默默发布了新的文献求助10
33秒前
Jasper应助gloria采纳,获得10
33秒前
suki完成签到 ,获得积分10
34秒前
直率的颜演完成签到,获得积分10
34秒前
728完成签到,获得积分10
36秒前
36秒前
Cindy发布了新的文献求助10
36秒前
WQY发布了新的文献求助10
37秒前
37秒前
40秒前
Carrots完成签到 ,获得积分10
41秒前
FOODHUA完成签到,获得积分10
41秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3159827
求助须知:如何正确求助?哪些是违规求助? 2810718
关于积分的说明 7889262
捐赠科研通 2469826
什么是DOI,文献DOI怎么找? 1315126
科研通“疑难数据库(出版商)”最低求助积分说明 630742
版权声明 602012