Preoperative prediction of microvascular invasion in hepatocellular carcinoma: a radiomic nomogram based on MRI

列线图 医学 接收机工作特性 逻辑回归 肝细胞癌 磁共振成像 置信区间 放射科 Lasso(编程语言) 核医学 肿瘤科 内科学 万维网 计算机科学
作者
L. Li,Qiuming Su,Hao Yang
出处
期刊:Clinical Radiology [Elsevier]
卷期号:77 (4): e269-e279 被引量:9
标识
DOI:10.1016/j.crad.2021.12.008
摘要

•The radiomic features were significantly associated with MVI. •Radiomic signature was an independent risk factor of MVI. •The radiomic model showed good accuracy for MVI prediction in HCC patients. AIM To develop a reliable model to predict microvascular invasion (MVI) in patients with hepatocellular carcinoma (HCC) by combining a large number of clinical and imaging examinations, especially the radiomic features of magnetic resonance imaging (MRI). MATERIALS AND METHODS Three hundred and one consecutive patients from two centres were enrolled. Least absolute shrinkage and selection operator (LASSO) regression was used to shrink the feature size, and logistic regression was used to construct a predictive radiomic signature. The ability of the nomogram to discriminate MVI in patients with HCC was evaluated using area under the curve (AUC) of receiver operating characteristics (ROC), accuracy, and calibration curves. RESULTS The radiomic signature showed a significant association with MVI (p<0.001 for all data sets). Other useful predictors of MVI included non-smooth tumour margin, internal arteries, and the alpha-fetoprotein (AFP) level. The nomogram demonstrated a strong prognostic capability in the training set and both validation sets, providing AUCs of 0.914 (95% confidence interval [CI] 0.853–0.956), 0.872 (95% CI: 0.757–0.946), and 0.881 (95% CI: 0.806–0.934), respectively. CONCLUSIONS The preoperative radiomic nomogram, incorporating clinical risk factors and a radiomic signature, could predict MVI in patients with HCC. The MRI-based radiomic–clinical model predicted the MVI of HCC effectively and was more efficient compared with the radiomic model or clinical model alone. To develop a reliable model to predict microvascular invasion (MVI) in patients with hepatocellular carcinoma (HCC) by combining a large number of clinical and imaging examinations, especially the radiomic features of magnetic resonance imaging (MRI). Three hundred and one consecutive patients from two centres were enrolled. Least absolute shrinkage and selection operator (LASSO) regression was used to shrink the feature size, and logistic regression was used to construct a predictive radiomic signature. The ability of the nomogram to discriminate MVI in patients with HCC was evaluated using area under the curve (AUC) of receiver operating characteristics (ROC), accuracy, and calibration curves. The radiomic signature showed a significant association with MVI (p<0.001 for all data sets). Other useful predictors of MVI included non-smooth tumour margin, internal arteries, and the alpha-fetoprotein (AFP) level. The nomogram demonstrated a strong prognostic capability in the training set and both validation sets, providing AUCs of 0.914 (95% confidence interval [CI] 0.853–0.956), 0.872 (95% CI: 0.757–0.946), and 0.881 (95% CI: 0.806–0.934), respectively. The preoperative radiomic nomogram, incorporating clinical risk factors and a radiomic signature, could predict MVI in patients with HCC. The MRI-based radiomic–clinical model predicted the MVI of HCC effectively and was more efficient compared with the radiomic model or clinical model alone.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
moony完成签到 ,获得积分10
刚刚
阳光发布了新的文献求助10
刚刚
852应助小于采纳,获得10
1秒前
1秒前
hecarli完成签到,获得积分10
1秒前
丘比特应助Cica采纳,获得10
1秒前
树下风源完成签到,获得积分10
1秒前
liyanglin完成签到 ,获得积分10
2秒前
源源完成签到,获得积分10
3秒前
circet发布了新的文献求助10
3秒前
dcq20535完成签到 ,获得积分10
3秒前
chloe发布了新的文献求助30
3秒前
NexusExplorer应助cassandra采纳,获得10
3秒前
yyt发布了新的文献求助30
4秒前
4秒前
科研F5发布了新的文献求助10
4秒前
e394282438发布了新的文献求助10
4秒前
萌萌雨发布了新的文献求助10
4秒前
VIP发布了新的文献求助10
4秒前
靖靖雯完成签到,获得积分10
4秒前
小胖完成签到,获得积分10
5秒前
5秒前
5秒前
5秒前
5秒前
venture发布了新的文献求助10
6秒前
平常向雪完成签到 ,获得积分10
7秒前
123完成签到,获得积分20
7秒前
彭于彦祖应助只喝白开水采纳,获得30
7秒前
许山柳完成签到,获得积分10
7秒前
ColdSpring完成签到,获得积分10
8秒前
SYX完成签到,获得积分10
8秒前
凡`完成签到,获得积分10
8秒前
WWXWWX应助fagfagsf采纳,获得10
8秒前
科目三应助萌萌雨采纳,获得10
9秒前
yyyyyyf应助任性的千柳采纳,获得10
10秒前
认真子默发布了新的文献求助10
10秒前
要发science发布了新的文献求助10
10秒前
Coldpal发布了新的文献求助10
10秒前
11秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147394
求助须知:如何正确求助?哪些是违规求助? 2798622
关于积分的说明 7830067
捐赠科研通 2455346
什么是DOI,文献DOI怎么找? 1306770
科研通“疑难数据库(出版商)”最低求助积分说明 627899
版权声明 601587