WiFi Indoor Location Method Based on RSSI

接收信号强度指示 计算机科学 实时计算 信号(编程语言) 信号强度 欧几里德距离 k-最近邻算法 无线电传播 架空(工程) 软件部署 无线 电信 人工智能 操作系统 程序设计语言
作者
Xin Li,Zhongliang Deng,Fuxing Ye,Xinyu Zheng,Likai Zhang,Zheng Zhou
标识
DOI:10.1109/idaacs53288.2021.9660916
摘要

With the rapid development and popularization of WiFi technology, positioning based on WiFi signal has become a hotspot in the field of indoor positioning research. The current indoor WiFi signal access point (AP) deployment has been very dense, which ensures a wide coverage of WiFi signal. However, AP deployment in indoor environments is often irregular, with a large number of redundant nodes, and the complex indoor environment can also have an impact on signal propagation, which greatly reduces the accuracy of WiFi positioning and increases the time and space overhead in the calculation process. To solve the above problems, this paper proposes a comprehensive AP selection method using Loss Rate (LR) and Signal Stability to measure the fluctuation of signal continuity and Received Signal Strength Indication (RSSI) of each AP, respectively, and validate it in the online stage using an improved fingerprint matching algorithm. In the offline stage, the APs with relatively continuous signal sources are filtered out by calculating LR, followed by calculating the signal stability of each AP at each sampling point and filtering out the APs with less fluctuation in RSSI values. In the online stage, the RSSI collected from the test point is matched with KNN (K Nearest Neighbor) and WKNN (Weighted K Nearest Neighbor) for localization, and the Manhattan distance is introduced to replace the Euclidean distance to finally obtain the test point localization results. The experimental environment of this paper is the ninth floor of the research building of Beijing University of Posts and Telecommunications. The experimental results show that the AP comprehensive selection method is used to achieve the optimization of AP combination, and the localization performance is evaluated by the improved WKNN localization algorithm, and it is found that the localization accuracy of this paper's algorithm is significantly improved. The localization accuracy can reach 1.18m in 60% of the range, which is 39.2% better than 1.94m of MaxMean AP selection method and 4.8% better than 1.24m of the traditional WKNN algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
猫刀完成签到,获得积分10
1秒前
胡维红发布了新的文献求助10
1秒前
有魅力翠琴完成签到,获得积分10
1秒前
yangyang发布了新的文献求助10
2秒前
闵问柳完成签到,获得积分10
2秒前
脑洞疼应助不黑采纳,获得10
3秒前
华仔应助Ryan采纳,获得50
3秒前
着急的柔完成签到,获得积分10
3秒前
3秒前
猫刀发布了新的文献求助10
4秒前
PsyAerill发布了新的文献求助30
4秒前
WDK发布了新的文献求助30
4秒前
悠悠爱学习完成签到,获得积分10
5秒前
李吉婷完成签到,获得积分20
5秒前
reflux应助谨言采纳,获得10
5秒前
小黑喵应助科研猛猛干采纳,获得20
5秒前
6秒前
隐形曼青应助worker采纳,获得10
6秒前
ziyu发布了新的文献求助10
6秒前
macleod完成签到,获得积分10
7秒前
zyx完成签到,获得积分20
7秒前
李吉婷发布了新的文献求助10
8秒前
玛奇朵完成签到,获得积分10
8秒前
风驰骏马发布了新的文献求助150
8秒前
小马甲应助PsyAerill采纳,获得10
8秒前
大个应助简单如容采纳,获得10
8秒前
聆风发布了新的文献求助10
9秒前
Lore完成签到,获得积分10
9秒前
第二菜完成签到,获得积分10
9秒前
科研通AI5应助出水的芙蓉采纳,获得10
9秒前
科研通AI5应助出水的芙蓉采纳,获得10
9秒前
阳子发布了新的文献求助10
9秒前
CipherSage应助zt采纳,获得10
10秒前
Tipton完成签到,获得积分10
10秒前
cat完成签到,获得积分10
10秒前
10秒前
深情安青应助小雨采纳,获得10
11秒前
11秒前
科研通AI5应助胡维红采纳,获得10
11秒前
田様应助起名字好难采纳,获得10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Therapeutic procedures and clinical efficacy of the clear S8-SGHB appliance for treatment of skeletal Class II malocclusion 1000
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Handbook on Inequality and Social Capital 800
Conference Record, IAS Annual Meeting 1977 610
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3547397
求助须知:如何正确求助?哪些是违规求助? 3124345
关于积分的说明 9359136
捐赠科研通 2822967
什么是DOI,文献DOI怎么找? 1551777
邀请新用户注册赠送积分活动 723682
科研通“疑难数据库(出版商)”最低求助积分说明 713893