阳极
电化学
电偶阳极
锌
水溶液
电池(电)
枝晶(数学)
剥离(纤维)
离子
电镀(地质)
化学工程
材料科学
储能
电化学窗口
纳米技术
化学
电极
冶金
复合材料
有机化学
电解质
阴极保护
功率(物理)
物理
物理化学
工程类
几何学
数学
量子力学
地球物理学
地质学
离子电导率
作者
Guannan Qian,Guibin Zan,Jizhou Li,Sang‐Jun Lee,Yong Wang,Yingying Zhu,Sheraz Gul,D. J. Vine,Sylvia Lewis,Wenbing Yun,Zi‐Feng Ma,P. Pianetta,Jun‐Sik Lee,Linsen Li,Yijin Liu
标识
DOI:10.1002/aenm.202200255
摘要
Abstract Aqueous Zn‐ion battery is a promising technology for electrochemical energy storage. The formation of Zn dendrites, however, can jeopardize the cell cycle life and thus, hinders the industrial adoption of this technology. A fundamental understanding of the kinetic mechanisms is crucial for improving the Zn‐ion battery. Here, in situ and operando X‐ray microscopy methods are utilized to visualize the Zn plating and stripping behaviors under different electrochemical conditions. It is demonstrated that the substrate curvature, local morphology, electrochemical protocols, and the surface chemistry can collectively affect the Zn plating behavior. These results provide new insights for developing the next‐generation dendrite‐free and long‐span aqueous Zn‐ion battery.
科研通智能强力驱动
Strongly Powered by AbleSci AI