Machine learning accelerated random structure searching: Application to yttrium superhydrides

最大值和最小值 计算机科学 密度泛函理论 晶体结构预测 算法 统计物理学 Crystal(编程语言) 机器学习 晶体结构 四方晶系 人工智能 数学 化学 计算化学 物理 结晶学 数学分析 程序设计语言
作者
Jean-Baptiste Charraud,G. Geneste,Marc Torrent,Jean‐Bernard Maillet
出处
期刊:Journal of Chemical Physics [American Institute of Physics]
卷期号:156 (20) 被引量:6
标识
DOI:10.1063/5.0085173
摘要

The search for new superhydrides, promising materials for both hydrogen storage and high temperature superconductivity, made great progress, thanks to atomistic simulations and Crystal Structure Prediction (CSP) algorithms. When they are combined with Density Functional Theory (DFT), these methods are highly reliable and often match a great part of the experimental results. However, systems of increasing complexity (number of atoms and chemical species) become rapidly challenging as the number of minima to explore grows exponentially with the number of degrees of freedom in the simulation cell. An efficient sampling strategy preserving a sustainable computational cost then remains to be found. We propose such a strategy based on an active-learning process where machine learning potentials and DFT simulations are jointly used, opening the way to the discovery of complex structures. As a proof of concept, this method is applied to the exploration of tin crystal structures under various pressures. We showed that the α phase, not included in the learning process, is correctly retrieved, despite its singular nature of bonding. Moreover, all the expected phases are correctly predicted under pressure (20 and 100 GPa), suggesting the high transferability of our approach. The method has then been applied to the search of yttrium superhydrides (YHx) crystal structures under pressure. The YH6 structure of space group Im-3m is successfully retrieved. However, the exploration of more complex systems leads to the appearance of a large number of structures. The selection of the relevant ones to be included in the active learning process is performed through the analysis of atomic environments and the clustering algorithm. Finally, a metric involving a distance based on x-ray spectra is introduced, which guides the structural search toward experimentally relevant structures. The global process (active-learning and new selection methods) is finally considered to explore more complex and unknown YHx phases, unreachable by former CSP algorithms. New complex phases are found, demonstrating the ability of our approach to push back the exponential wall of complexity related to CSP.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
十一完成签到,获得积分10
1秒前
1秒前
美罗培南完成签到,获得积分10
1秒前
超级的笑蓝完成签到,获得积分10
2秒前
3秒前
tataq发布了新的文献求助10
4秒前
8秒前
xinyi完成签到,获得积分10
8秒前
9秒前
9秒前
赘婿应助tataq采纳,获得10
10秒前
王大饼发布了新的文献求助10
11秒前
杨俊锋发布了新的文献求助10
13秒前
13秒前
在水一方应助沉默的幻枫采纳,获得10
13秒前
完美世界应助niuniu采纳,获得10
14秒前
情怀应助dyy采纳,获得10
14秒前
14秒前
15秒前
跳跃的浩阑发布了新的文献求助200
16秒前
恰恰完成签到,获得积分10
18秒前
19秒前
19秒前
Bennyz发布了新的文献求助10
19秒前
养猫的路飞完成签到,获得积分10
21秒前
21秒前
从容的雨灵完成签到,获得积分10
22秒前
Orange应助背后丹妗采纳,获得10
22秒前
科研通AI5应助烂漫的幻露采纳,获得10
22秒前
慕青应助科研鸟采纳,获得10
22秒前
YifanWang应助初七采纳,获得30
23秒前
科研通AI5应助冷傲的傲霜采纳,获得10
24秒前
24秒前
冷艳的冬萱完成签到 ,获得积分10
25秒前
Inuit完成签到,获得积分10
26秒前
niuniu发布了新的文献求助10
26秒前
kingsley320发布了新的文献求助10
26秒前
29秒前
Taro完成签到 ,获得积分10
30秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ophthalmic Equipment Market 1500
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3672470
求助须知:如何正确求助?哪些是违规求助? 3228781
关于积分的说明 9781944
捐赠科研通 2939186
什么是DOI,文献DOI怎么找? 1610704
邀请新用户注册赠送积分活动 760696
科研通“疑难数据库(出版商)”最低求助积分说明 736174