亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Minimal EEG channel selection for depression detection with connectivity features during sleep

脑电图 睡眠阶段 颞叶 睡眠(系统调用) 心理学 模式识别(心理学) 听力学 萧条(经济学) 人工智能 计算机科学 医学 多导睡眠图 神经科学 癫痫 经济 宏观经济学 操作系统
作者
Yangting Zhang,Kejie Wang,Yu Wei,Xinwen Guo,Jinfeng Wen,Yuxi Luo
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:147: 105690-105690 被引量:44
标识
DOI:10.1016/j.compbiomed.2022.105690
摘要

Sleeping cortical electroencephalogram (EEG) has the potential for depression detection, for different sleep structure and cortical connection have been proved in depressed patients. However, the operation of multi-channel sleep EEG recording is cumbersome and requires laboratory equipment and professional sleep technician. Here, we focus on the depression detection using minimal sleep EEG channels. Sixteen channels of EEG data of 30 patients with depression and 30 age-matched normal controls were recorded during sleep. Power spectral density of each single EEG channel was calculated, followed by measuring the symbolic transfer entropy (STE) and weighed phase lag index (WPLI) between EEG channel pairs in various frequency bands. Thereafter, these features were evaluated by F-score in the two-way classification (depression vs. control) of 30-s sleep EEG segments. Based on the F-score, entropy method was introduced to calculate the weight which could further assess the classification ability of various EEG channels or channel pairs. Finally, machine learning was implemented to verify the important EEG channels or channel pairs in depression diagnosis. The features characterizing the inter-hemispheric connectivity in the posterior lobe, especially in the temporal lobe, showed high classification capacity. The classification accuracy of using two and four EEG channels in the temporal lobe were 97.96% and 99.61%, respectively. This study showed the possibility of using only a few sleep EEG channels for depression screening, which may greatly facilitate the diagnosis of depression outside the hospital.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助科研通管家采纳,获得10
6秒前
10秒前
17秒前
58秒前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
暴躁的奇异果完成签到,获得积分10
1分钟前
1分钟前
领导范儿应助Ming采纳,获得10
1分钟前
2分钟前
2分钟前
CodeCraft应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
George发布了新的文献求助10
2分钟前
2分钟前
Ming发布了新的文献求助10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
Enso完成签到 ,获得积分10
4分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
阿里给阿里的求助进行了留言
4分钟前
小透明发布了新的文献求助10
4分钟前
4分钟前
SUNny发布了新的文献求助10
4分钟前
5分钟前
5分钟前
量子星尘发布了新的文献求助10
5分钟前
5分钟前
5分钟前
HYQ完成签到 ,获得积分10
6分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664501
求助须知:如何正确求助?哪些是违规求助? 4863056
关于积分的说明 15107857
捐赠科研通 4823130
什么是DOI,文献DOI怎么找? 2581958
邀请新用户注册赠送积分活动 1536065
关于科研通互助平台的介绍 1494491