Minimal EEG channel selection for depression detection with connectivity features during sleep

脑电图 睡眠阶段 颞叶 睡眠(系统调用) 心理学 模式识别(心理学) 听力学 萧条(经济学) 人工智能 计算机科学 医学 多导睡眠图 神经科学 癫痫 经济 宏观经济学 操作系统
作者
Yangting Zhang,Kejie Wang,Yu Wei,Xinwen Guo,Jinfeng Wen,Yuxi Luo
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:147: 105690-105690 被引量:29
标识
DOI:10.1016/j.compbiomed.2022.105690
摘要

Sleeping cortical electroencephalogram (EEG) has the potential for depression detection, for different sleep structure and cortical connection have been proved in depressed patients. However, the operation of multi-channel sleep EEG recording is cumbersome and requires laboratory equipment and professional sleep technician. Here, we focus on the depression detection using minimal sleep EEG channels. Sixteen channels of EEG data of 30 patients with depression and 30 age-matched normal controls were recorded during sleep. Power spectral density of each single EEG channel was calculated, followed by measuring the symbolic transfer entropy (STE) and weighed phase lag index (WPLI) between EEG channel pairs in various frequency bands. Thereafter, these features were evaluated by F-score in the two-way classification (depression vs. control) of 30-s sleep EEG segments. Based on the F-score, entropy method was introduced to calculate the weight which could further assess the classification ability of various EEG channels or channel pairs. Finally, machine learning was implemented to verify the important EEG channels or channel pairs in depression diagnosis. The features characterizing the inter-hemispheric connectivity in the posterior lobe, especially in the temporal lobe, showed high classification capacity. The classification accuracy of using two and four EEG channels in the temporal lobe were 97.96% and 99.61%, respectively. This study showed the possibility of using only a few sleep EEG channels for depression screening, which may greatly facilitate the diagnosis of depression outside the hospital.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助糊涂的丹南采纳,获得10
刚刚
xr发布了新的文献求助10
2秒前
3秒前
family完成签到,获得积分10
3秒前
3秒前
4秒前
4秒前
lm发布了新的文献求助10
4秒前
5秒前
Nancy完成签到 ,获得积分10
6秒前
8秒前
无所归兮发布了新的文献求助10
8秒前
8秒前
陈陈发布了新的文献求助30
10秒前
破心发布了新的文献求助10
10秒前
多情的捕完成签到,获得积分10
11秒前
12秒前
14秒前
望舒发布了新的文献求助10
14秒前
彭于晏应助林洛沁采纳,获得10
15秒前
01完成签到,获得积分10
17秒前
万能图书馆应助Advocate采纳,获得10
18秒前
1177发布了新的文献求助10
19秒前
梦Weimar发布了新的文献求助10
19秒前
19秒前
qq发布了新的文献求助10
20秒前
iiiyyy发布了新的文献求助10
22秒前
杜兰特发布了新的文献求助10
22秒前
tclouds发布了新的文献求助30
22秒前
22秒前
23秒前
24秒前
24秒前
嗷嗷发布了新的文献求助10
25秒前
小庄完成签到 ,获得积分10
25秒前
巨星不吃辣完成签到,获得积分10
26秒前
26秒前
27秒前
aaaa发布了新的文献求助10
27秒前
pokexuejiao发布了新的文献求助20
28秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992317
求助须知:如何正确求助?哪些是违规求助? 3533285
关于积分的说明 11261852
捐赠科研通 3272704
什么是DOI,文献DOI怎么找? 1805867
邀请新用户注册赠送积分活动 882732
科研通“疑难数据库(出版商)”最低求助积分说明 809459