Minimal EEG channel selection for depression detection with connectivity features during sleep

脑电图 睡眠阶段 颞叶 睡眠(系统调用) 心理学 模式识别(心理学) 听力学 萧条(经济学) 人工智能 计算机科学 医学 多导睡眠图 神经科学 癫痫 经济 宏观经济学 操作系统
作者
Yangting Zhang,Kejie Wang,Yu Wei,Xinwen Guo,Jinfeng Wen,Yuxi Luo
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:147: 105690-105690 被引量:44
标识
DOI:10.1016/j.compbiomed.2022.105690
摘要

Sleeping cortical electroencephalogram (EEG) has the potential for depression detection, for different sleep structure and cortical connection have been proved in depressed patients. However, the operation of multi-channel sleep EEG recording is cumbersome and requires laboratory equipment and professional sleep technician. Here, we focus on the depression detection using minimal sleep EEG channels. Sixteen channels of EEG data of 30 patients with depression and 30 age-matched normal controls were recorded during sleep. Power spectral density of each single EEG channel was calculated, followed by measuring the symbolic transfer entropy (STE) and weighed phase lag index (WPLI) between EEG channel pairs in various frequency bands. Thereafter, these features were evaluated by F-score in the two-way classification (depression vs. control) of 30-s sleep EEG segments. Based on the F-score, entropy method was introduced to calculate the weight which could further assess the classification ability of various EEG channels or channel pairs. Finally, machine learning was implemented to verify the important EEG channels or channel pairs in depression diagnosis. The features characterizing the inter-hemispheric connectivity in the posterior lobe, especially in the temporal lobe, showed high classification capacity. The classification accuracy of using two and four EEG channels in the temporal lobe were 97.96% and 99.61%, respectively. This study showed the possibility of using only a few sleep EEG channels for depression screening, which may greatly facilitate the diagnosis of depression outside the hospital.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
林撞树完成签到,获得积分10
刚刚
小冬腊月完成签到,获得积分10
刚刚
研友_nq2QpZ发布了新的文献求助10
1秒前
FOODIE完成签到,获得积分10
1秒前
冷艳的海白完成签到,获得积分10
1秒前
杰2580发布了新的文献求助10
2秒前
4秒前
可取完成签到,获得积分10
5秒前
美好的老黑完成签到 ,获得积分10
5秒前
momo完成签到,获得积分10
7秒前
机灵石头完成签到,获得积分10
7秒前
研友_nq2QpZ完成签到,获得积分10
8秒前
FashionBoy应助Hua采纳,获得100
8秒前
每天都在找完成签到,获得积分10
9秒前
牛角包完成签到,获得积分10
10秒前
wanci应助Hug采纳,获得10
10秒前
杰2580完成签到,获得积分10
11秒前
lijianguo完成签到,获得积分10
11秒前
确幸完成签到 ,获得积分10
11秒前
小二郎应助王电催化采纳,获得10
12秒前
77最可爱完成签到,获得积分10
12秒前
RenHP完成签到,获得积分10
12秒前
淡然一德完成签到,获得积分10
12秒前
不如吃茶去完成签到 ,获得积分10
13秒前
木子完成签到,获得积分10
16秒前
Huangy000完成签到,获得积分20
16秒前
dream完成签到 ,获得积分10
17秒前
33完成签到,获得积分10
18秒前
18秒前
瑞今天博学了吗完成签到,获得积分10
19秒前
是玥玥啊完成签到 ,获得积分10
19秒前
将个烂就完成签到,获得积分10
20秒前
20秒前
仁爱的小博完成签到,获得积分10
21秒前
21秒前
21秒前
22秒前
云深不知处完成签到,获得积分10
22秒前
AN完成签到,获得积分10
22秒前
过于喧嚣的孤独完成签到,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5418754
求助须知:如何正确求助?哪些是违规求助? 4534384
关于积分的说明 14143702
捐赠科研通 4450621
什么是DOI,文献DOI怎么找? 2441331
邀请新用户注册赠送积分活动 1433030
关于科研通互助平台的介绍 1410467