Modulating p‐Orbital of Bismuth Nanosheet by Nickel Doping for Electrocatalytic Carbon Dioxide Reduction Reaction

纳米片 电催化剂 电化学 密度泛函理论 二氧化碳电化学还原 法拉第效率 材料科学 选择性 兴奋剂 无机化学 费米能级 化学 纳米技术 催化作用 电极 物理化学 计算化学 电子 有机化学 冶金 一氧化碳 光电子学 物理 量子力学
作者
Helei Wei,Aidong Tan,Zhipeng Xiang,Jie Zhang,Jinhua Piao,Zhenxing Liang,Kai Wan,Zhiyong Fu
出处
期刊:Chemsuschem [Wiley]
卷期号:15 (15): e202200752-e202200752 被引量:30
标识
DOI:10.1002/cssc.202200752
摘要

Abstract Electrochemical reduction of CO 2 (CO 2 RR) to value‐added chemicals is an effective way to harvest renewable energy and utilize carbon dioxide. However, the electrocatalysts for CO 2 RR suffer from insufficient activity and selectivity due to the limitation of CO 2 activation. In this work, a Ni‐doped Bi nanosheet (Ni@Bi‐NS) electrocatalyst is synthesized for the electrochemical reduction of CO 2 to HCOOH. Physicochemical characterization methods are extensively used to investigate the composition and structure of the materials. Electrochemical results reveal that for the production of HCOOH, the obtained Ni@Bi‐NS exhibits an equivalent current density of 51.12 mA cm −2 at −1.10 V, which is much higher than the pure Bi‐NS (18.00 mA cm −2 at −1.10 V). A high Faradaic efficiency over 92.0 % for HCOOH is achieved in a wide potential range from −0.80 to −1.10 V, and particularly, the highest efficiency of 98.4 % is achieved at −0.90 V. Both experimental and theoretical results reveal that the superior activity and selectivity are attributed to the doping effect of Ni on the Bi nanosheet. The density functional theory calculation reveals that upon doping, the charge is transferred from Ni to the adjacent Bi atoms, which shifts the p‐orbital electronic density states towards the Fermi level. The resultant strong orbital hybridization between Bi and the π* orbitals of CO 2 facilitates the formation of *OCHO intermediates and favors its activation. This work provides an effective strategy to develop active and selective electrocatalysts for CO 2 RR by modulating the electronic density state.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
复苏应助郭mm采纳,获得10
刚刚
samsara完成签到 ,获得积分10
刚刚
铭铭铭完成签到,获得积分10
刚刚
小米应助郭mm采纳,获得10
刚刚
量子星尘发布了新的文献求助10
刚刚
刚刚
刚刚
我是老大应助九bai采纳,获得10
刚刚
1秒前
1秒前
XI_2001发布了新的文献求助10
1秒前
1秒前
1秒前
xW12123完成签到,获得积分10
2秒前
2秒前
2秒前
季秋十二发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
爱学习的小燕子完成签到,获得积分10
3秒前
3秒前
dato12423完成签到,获得积分10
3秒前
思源应助百事可乐采纳,获得10
3秒前
夏夏发布了新的文献求助10
3秒前
lu完成签到,获得积分10
3秒前
十七完成签到,获得积分10
3秒前
4秒前
直率冷雁发布了新的文献求助10
4秒前
复杂小凡完成签到,获得积分20
4秒前
希望天下0贩的0应助小唐采纳,获得10
4秒前
4秒前
邓什么邓发布了新的文献求助10
4秒前
全力以赴先生完成签到,获得积分10
4秒前
橙子完成签到,获得积分10
4秒前
michael发布了新的文献求助30
5秒前
zz完成签到,获得积分10
5秒前
5秒前
张恒发布了新的文献求助10
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667660
求助须知:如何正确求助?哪些是违规求助? 4887012
关于积分的说明 15121059
捐赠科研通 4826441
什么是DOI,文献DOI怎么找? 2584044
邀请新用户注册赠送积分活动 1538066
关于科研通互助平台的介绍 1496210