表面张力
毛细管作用
毛细管数
渗透(战争)
物理
热力学
数学
运筹学
出处
期刊:Physical Review
[American Physical Society]
日期:1921-03-01
卷期号:17 (3): 273-283
被引量:6164
标识
DOI:10.1103/physrev.17.273
摘要
Penetration of Liquids into Cylindrical Capillaries.---The rate of penetration into a small capillary of radius $r$ is shown to be: $\frac{\mathrm{dl}}{\mathrm{dt}}=\frac{P({r}^{2}+4\ensuremath{\epsilon}r)}{8\ensuremath{\eta}l}$, where $P$ is the driving pressure, $\ensuremath{\epsilon}$ the coefficient of slip and $\ensuremath{\eta}$ the viscosity. By integrating this expression, the distance penetrated by a liquid flowing under capillary pressure alone into a horizontal capillary or one with small internal surface is found to be the square root of ($\frac{\ensuremath{\gamma}\mathrm{rt}\ifmmode\cdot\else\textperiodcentered\fi{}cos\ensuremath{\theta}}{2\ensuremath{\eta}}$), where $\ensuremath{\gamma}$ is the surface tension and $\ensuremath{\theta}$ the angle of contact. The quantity ($\frac{\ensuremath{\gamma}cos\ensuremath{\theta}}{2\ensuremath{\eta}}$) is called the coefficient of penetrance or the penetrativity of the liquid.Penetration of Liquids into a Porous Body.---(1) Theory. If a porous body behaves as an assemblage of very small cylindrical capillaries, the volume which penetrates in a time $t$ would be proportional to the square root of ($\frac{\ensuremath{\gamma}t}{\ensuremath{\eta}}$). (2) Experiments with mercury, water and other liquids completely verify the theoretical deductions.Dynamic capillary method of measuring surface tension is described. It possesses certain advantages on the static method of capillary rise.
科研通智能强力驱动
Strongly Powered by AbleSci AI