Characterizing treated wastewaters of different industries using clustered fluorescence EEM–PARAFAC and FT-IR spectroscopy: Implications for downstream impact and source identification

溶解有机碳 吸光度 化学 环境化学 流出物 生物地球化学循环 天然有机质 荧光光谱法 荧光 有机质 分析化学(期刊) 环境科学 色谱法 环境工程 有机化学 量子力学 物理
作者
Liyang Yang,Dae Ho Han,Bo-Mi Lee,Jin Hur
出处
期刊:Chemosphere [Elsevier BV]
卷期号:127: 222-228 被引量:143
标识
DOI:10.1016/j.chemosphere.2015.02.028
摘要

The quantity and spectroscopic features of dissolved organic matter (DOM) in treated wastewaters were studied for up to 57 facilities across 12 industrial categories to evaluate the potential influences of the effluents on downstream ecosystems and the feasibility of spectroscopic techniques in discriminating pollution sources. The average dissolved organic carbon (DOC) concentration was 3.30 ± 0.70–73.4 ± 14.0 mg L−1 for each category, high enough to pollute downstream waterbodies. The average specific UV absorbance at 254 nm (SUVA) for each category spanned a broad range between 0.79 ± 0.24 and 5.35 ± 1.41 L (mg m)−1, suggesting a variable aromaticity of DOM. Fluorescence excitation emission matrix–parallel factor analysis (EEM–PARAFAC) identified four humic-like and two protein-like components. The EEMs were grouped into seven clusters, five of which were dominated by a single PARAFAC component in each cluster. Fourier transform infrared (FT-IR) spectroscopy revealed notable variations in relative intensities of several characteristic absorbance bands among different wastewaters. The large variability in SUVA, PARAFAC and FT-IR features indicated that the chemical composition of DOM greatly differ among industrial wastewaters, and further implied variable biogeochemical reactivity in downstream waterbodies. The results also suggested the potential of DOM features in discriminating different wastewaters, although the variations within each industrial category were also significant.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
咚咚发布了新的文献求助10
刚刚
刚刚
1秒前
FB完成签到,获得积分10
1秒前
xiaohanzai88完成签到,获得积分10
1秒前
桐桐应助彭薇颖采纳,获得10
1秒前
稳稳发布了新的文献求助10
1秒前
可以完成签到,获得积分10
2秒前
2秒前
3秒前
赘婿应助Tan采纳,获得10
3秒前
3秒前
4秒前
Cynthia发布了新的文献求助10
5秒前
Fliu发布了新的文献求助10
5秒前
bkagyin应助宝宝巴士驾驶员采纳,获得10
5秒前
5秒前
5秒前
科研通AI5应助尊敬谷波采纳,获得10
5秒前
852应助典雅的俊驰采纳,获得10
6秒前
6秒前
6秒前
我是老大应助友好的储采纳,获得10
6秒前
jack发布了新的文献求助10
7秒前
研友_VZG7GZ应助xiaowei采纳,获得10
7秒前
天天快乐应助孤独的访旋采纳,获得10
8秒前
wyy发布了新的文献求助10
8秒前
whatever应助guozizi采纳,获得50
8秒前
9秒前
9秒前
Pyrene发布了新的文献求助10
10秒前
我爱看文献完成签到,获得积分10
10秒前
无辜的听安完成签到,获得积分10
10秒前
Xiao完成签到,获得积分10
11秒前
11秒前
脑洞疼应助芋泥脑袋采纳,获得10
11秒前
wanci应助wyy采纳,获得10
11秒前
小二郎应助调皮的凝丹采纳,获得10
11秒前
沙发发完成签到,获得积分20
12秒前
PINK完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5193007
求助须知:如何正确求助?哪些是违规求助? 4375799
关于积分的说明 13626640
捐赠科研通 4230400
什么是DOI,文献DOI怎么找? 2320393
邀请新用户注册赠送积分活动 1318798
关于科研通互助平台的介绍 1269105