已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Classification of Tool Wear State based on Dual Attention Mechanism Network

机制(生物学) 对偶(语法数字) 国家(计算机科学) 计算机科学 人工智能 算法 认识论 哲学 语言学
作者
Jiaqi Zhou,Caixu Yue,Xianli Liu,Wei Xia,Xudong Wei,Jiaxu Qu,Steven Y. Liang,Lihui Wang
出处
期刊:Robotics and Computer-integrated Manufacturing [Elsevier BV]
卷期号:83: 102575-102575 被引量:14
标识
DOI:10.1016/j.rcim.2023.102575
摘要

To assure the quality of product processing, precise abrasion detections must be performed on the machine's cutting tools. Consequently, the improvement of abrasion detection is crucial for the upkeep of devices in terms of processing capacity and cutting performance. The technique of tool surface abrasion imaging is one of the detection methods. This paper proposes a deep learning and computer vision-based monitoring model for conducting abrasion monitoring over cutting tools, as conventional imaging techniques always require high precision and are criticized for a complicated calculation process and their time-consuming nature resulting from manual calibration. This method is built on the SE-ResNet50 based online abrasion state monitoring model and introduces an enhanced dual-attention mechanism to learn the dependency of pixel characteristics and the inter-correlation between channels, respectively. It is proposed that the Enhance Module Network capture the underlying information on a greater scale. To achieve the self-adaptive perception of the network weights corresponding with distinct abrasion categories, attributes are recovered from the input photos, hence eliminating the complexity and restrictions associated with manual extraction. The established abrasion status categorization method is experimentally validated on a three-axis milling machine with cemented carbide tools. The results indicated that the proposed method can classify tool wear state more accurately from the raw data collected by industrial cameras under the premise of ensuring efficiency. Its recognition accuracy is up to 96.99%, and the generalization ability can obtain good results, which provides a novel concept for tool condition monitoring in actual industrial scene.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dominic12361完成签到 ,获得积分10
2秒前
coke发布了新的文献求助10
4秒前
勤奋的立果完成签到 ,获得积分10
6秒前
柏林寒冬应助养猪骑士采纳,获得10
9秒前
10秒前
ftl完成签到 ,获得积分10
11秒前
小熊熊完成签到,获得积分10
12秒前
歪方橘发布了新的文献求助10
13秒前
19秒前
林希冀完成签到,获得积分10
19秒前
19秒前
JamesPei应助chenfaju采纳,获得10
20秒前
小蘑菇应助山猪吃细糠采纳,获得10
21秒前
深情安青应助SDNUDRUG采纳,获得10
21秒前
莫道桑榆完成签到,获得积分10
21秒前
23秒前
xunuo发布了新的文献求助10
23秒前
学术小白完成签到,获得积分10
24秒前
MchemG发布了新的文献求助20
24秒前
研友_59AB85完成签到,获得积分10
25秒前
悠木完成签到 ,获得积分10
26秒前
羊羔蓉完成签到,获得积分10
27秒前
28秒前
Zeno完成签到 ,获得积分10
30秒前
fransiccarey完成签到,获得积分10
31秒前
小王贼棒发布了新的文献求助10
34秒前
34秒前
歪方橘完成签到,获得积分10
34秒前
biubiu完成签到,获得积分10
36秒前
expuery发布了新的文献求助10
38秒前
PLAGH221完成签到,获得积分10
38秒前
Honor完成签到 ,获得积分10
39秒前
terryok完成签到,获得积分10
39秒前
小鱼发布了新的文献求助50
39秒前
静静发布了新的文献求助10
40秒前
爆米花应助zhaoaotao采纳,获得10
41秒前
华仔应助佳丽采纳,获得10
43秒前
fh发布了新的文献求助10
43秒前
45秒前
46秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968181
求助须知:如何正确求助?哪些是违规求助? 3513192
关于积分的说明 11166764
捐赠科研通 3248420
什么是DOI,文献DOI怎么找? 1794243
邀请新用户注册赠送积分活动 874936
科研通“疑难数据库(出版商)”最低求助积分说明 804629