Classification of Tool Wear State based on Dual Attention Mechanism Network

机制(生物学) 对偶(语法数字) 国家(计算机科学) 计算机科学 人工智能 算法 认识论 哲学 语言学
作者
Jiaqi Zhou,Caixu Yue,Xianli Liu,Wei Xia,Xudong Wei,Jiaxu Qu,Steven Y. Liang,Lihui Wang
出处
期刊:Robotics and Computer-integrated Manufacturing [Elsevier]
卷期号:83: 102575-102575 被引量:14
标识
DOI:10.1016/j.rcim.2023.102575
摘要

To assure the quality of product processing, precise abrasion detections must be performed on the machine's cutting tools. Consequently, the improvement of abrasion detection is crucial for the upkeep of devices in terms of processing capacity and cutting performance. The technique of tool surface abrasion imaging is one of the detection methods. This paper proposes a deep learning and computer vision-based monitoring model for conducting abrasion monitoring over cutting tools, as conventional imaging techniques always require high precision and are criticized for a complicated calculation process and their time-consuming nature resulting from manual calibration. This method is built on the SE-ResNet50 based online abrasion state monitoring model and introduces an enhanced dual-attention mechanism to learn the dependency of pixel characteristics and the inter-correlation between channels, respectively. It is proposed that the Enhance Module Network capture the underlying information on a greater scale. To achieve the self-adaptive perception of the network weights corresponding with distinct abrasion categories, attributes are recovered from the input photos, hence eliminating the complexity and restrictions associated with manual extraction. The established abrasion status categorization method is experimentally validated on a three-axis milling machine with cemented carbide tools. The results indicated that the proposed method can classify tool wear state more accurately from the raw data collected by industrial cameras under the premise of ensuring efficiency. Its recognition accuracy is up to 96.99%, and the generalization ability can obtain good results, which provides a novel concept for tool condition monitoring in actual industrial scene.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
3秒前
3秒前
3秒前
ATP完成签到,获得积分10
4秒前
5秒前
5秒前
6秒前
6秒前
斯文败类应助张尧摇摇摇采纳,获得10
6秒前
6秒前
栗子栗子完成签到,获得积分10
7秒前
0816my完成签到 ,获得积分10
7秒前
8秒前
qcwindchasing完成签到 ,获得积分10
9秒前
唔西迪西发布了新的文献求助10
9秒前
ddddddd完成签到 ,获得积分10
10秒前
觅桃乌龙完成签到,获得积分10
10秒前
10秒前
温暖忆丹发布了新的文献求助10
11秒前
科研通AI2S应助sasa采纳,获得10
11秒前
11秒前
11秒前
爆米花应助Jehuw采纳,获得10
12秒前
学术蝗虫应助今天开心吗采纳,获得10
12秒前
12秒前
小马甲应助科研通管家采纳,获得10
13秒前
13秒前
Ava应助科研通管家采纳,获得10
13秒前
苏栀应助科研通管家采纳,获得10
13秒前
搜集达人应助科研通管家采纳,获得10
13秒前
竹筏过海应助科研通管家采纳,获得80
13秒前
无花果应助科研通管家采纳,获得10
13秒前
慕青应助科研通管家采纳,获得10
13秒前
桐桐应助科研通管家采纳,获得10
13秒前
Chem应助科研通管家采纳,获得10
13秒前
爆米花应助科研通管家采纳,获得10
13秒前
大个应助科研通管家采纳,获得10
14秒前
坚强的广山应助科研通管家采纳,获得200
14秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3308145
求助须知:如何正确求助?哪些是违规求助? 2941687
关于积分的说明 8504876
捐赠科研通 2616322
什么是DOI,文献DOI怎么找? 1429586
科研通“疑难数据库(出版商)”最低求助积分说明 663807
邀请新用户注册赠送积分活动 648793