Nanocluster superstructures assembled via surface ligand switching at high temperature

纳米团簇 上部结构 材料科学 纳米技术 纳米尺度 配体(生物化学) 纳米结构 氧化物 分子开关 化学 分子 物理 受体 有机化学 冶金 热力学 生物化学
作者
Grayson Johnson,Moon Young Yang,Chang Liu,Hua Zhou,Xiaobing Zuo,Diane A. Dickie,Sihan Wang,Wenpei Gao,Bukuru Anaclet,Frédéric A. Perras,Fuyan Ma,Chenjie Zeng,Da Wang,Sara Bals,Sheng Dai,Zhen Xu,Guoliang Liu,William A. Goddard,Sen Zhang
出处
期刊:Nature Synthesis [Springer Nature]
卷期号:2 (9): 828-837 被引量:10
标识
DOI:10.1038/s44160-023-00304-8
摘要

Superstructures with nanoscale building blocks, when coupled with precise control of the constituent units, open opportunities in rationally designing and manufacturing desired functional materials. Yet, synthetic strategies for the large-scale production of superstructures are scarce. We report a scalable and generalized approach to synthesizing superstructures assembled from atomically precise Ce24O28(OH)8 and other rare-earth metal-oxide nanoclusters alongside a detailed description of the self-assembly mechanism. Combining operando small-angle X-ray scattering, ex situ molecular and structural characterizations, and molecular dynamics simulations indicates that a high-temperature ligand-switching mechanism, from oleate to benzoate, governs the formation of the nanocluster assembly. The chemical tuning of surface ligands controls superstructure disassembly and reassembly, and furthermore, enables the synthesis of multicomponent superstructures. This synthetic approach, and the accurate mechanistic understanding, are promising for the preparation of superstructures for use in electronics, plasmonics, magnetics and catalysis. Synthesizing superstructures with precisely controlled nanoscale building blocks is challenging. Here the assembly of superstructures is reported from atomically precise Ce24O28(OH)8 and other rare-earth metal-oxide nanoclusters and their multicomponent combinations. A high-temperature ligand-switching mechanism controls the self-assembly.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kkkklo发布了新的文献求助30
刚刚
传奇3应助润润轩轩采纳,获得10
刚刚
刚刚
2秒前
和谐乌龟发布了新的文献求助10
2秒前
zZ完成签到,获得积分10
2秒前
科研小白完成签到,获得积分10
2秒前
LYY发布了新的文献求助10
3秒前
wangfu完成签到,获得积分10
3秒前
ding应助Dddd采纳,获得10
4秒前
yin发布了新的文献求助10
4秒前
大模型应助张张采纳,获得10
4秒前
Akim应助吾问无为谓采纳,获得10
5秒前
5秒前
神勇的冰姬完成签到,获得积分10
6秒前
7秒前
7秒前
7秒前
7秒前
8秒前
tony完成签到,获得积分10
8秒前
Uynaux发布了新的文献求助30
8秒前
SONG完成签到,获得积分10
8秒前
SYLH应助干秋白采纳,获得10
9秒前
9秒前
风雨1210发布了新的文献求助10
10秒前
文艺书雪完成签到 ,获得积分10
10秒前
独行侠完成签到,获得积分10
10秒前
11秒前
我测你码发布了新的文献求助10
11秒前
又要起名字完成签到,获得积分10
11秒前
11秒前
11秒前
damian完成签到,获得积分10
12秒前
LiShin发布了新的文献求助10
12秒前
渝州人应助凤凰山采纳,获得10
13秒前
sweetbearm应助凤凰山采纳,获得10
13秒前
我是老大应助科研通管家采纳,获得10
13秒前
大个应助科研通管家采纳,获得10
13秒前
yizhiGao应助科研通管家采纳,获得10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794