亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A new attention-based 3D densely connected cross-stage-partial network for motor imagery classification in BCI

脑-机接口 计算机科学 运动表象 稳健性(进化) 人工智能 模式识别(心理学) 卷积神经网络 脑电图 特征提取 机器学习 心理学 生物化学 基因 精神科 化学
作者
Yintang Wen,Wei He,Yuyan Zhang
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:19 (5): 056026-056026 被引量:1
标识
DOI:10.1088/1741-2552/ac93b4
摘要

Abstract Objective . The challenge for motor imagery (MI) in brain-computer interface (BCI) systems is finding a reliable classification model that has high classification accuracy and excellent robustness. Currently, one of the main problems leading to degraded classification performance is the inaccuracy caused by nonstationarities and low signal-to-noise ratio in electroencephalogram (EEG) signals. Approach . This study proposes a novel attention-based 3D densely connected cross-stage-partial network (DCSPNet) model to achieve efficient EEG-based MI classification. This is an end-to-end classification model framework based on the convolutional neural network (CNN) architecture. In this framework, to fully utilize the complementary features in each dimension, the optimal features are extracted adaptively from the EEG signals through the spatial-spectral-temporal (SST) attention mechanism. The 3D DCSPNet is introduced to reduce the gradient loss by segmenting the extracted feature maps to strengthen the network learning capability. Additionally, the design of the densely connected structure increases the robustness of the network. Main results . The performance of the proposed method was evaluated using the BCI competition IV 2a and the high gamma dataset, achieving an average accuracy of 84.45% and 97.88%, respectively. Our method outperformed most state-of-the-art classification algorithms, demonstrating its effectiveness and strong generalization ability. Significance. The experimental results show that our method is promising for improving the performance of MI-BCI. As a general framework based on time-series classification, it can be applied to BCI-related fields.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
RWcreator完成签到 ,获得积分10
刚刚
牛八先生完成签到,获得积分10
3秒前
shellyAPTX4869完成签到,获得积分10
5秒前
12秒前
zhangweny完成签到,获得积分10
15秒前
xl_c完成签到 ,获得积分10
15秒前
cc发布了新的文献求助10
17秒前
zhangweny发布了新的文献求助10
17秒前
21秒前
21秒前
22秒前
研友_VZG7GZ应助cc采纳,获得10
22秒前
23秒前
ViVi发布了新的文献求助10
27秒前
天注定发布了新的文献求助10
27秒前
28秒前
28秒前
cc发布了新的文献求助10
29秒前
星辰大海应助BeanHahn采纳,获得10
29秒前
zhuxiaoyue完成签到,获得积分10
32秒前
35秒前
44秒前
44秒前
桐桐应助喝可乐也很好采纳,获得20
47秒前
君兰完成签到,获得积分10
48秒前
49秒前
51秒前
slby完成签到 ,获得积分10
52秒前
君兰发布了新的文献求助10
54秒前
友好碧完成签到 ,获得积分10
56秒前
乐观的月亮完成签到,获得积分10
1分钟前
1分钟前
zhuxiaoyue发布了新的文献求助10
1分钟前
打打应助辉辉采纳,获得10
1分钟前
美美完成签到,获得积分20
1分钟前
1分钟前
1分钟前
1分钟前
BeanHahn发布了新的文献求助10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5714225
求助须知:如何正确求助?哪些是违规求助? 5221821
关于积分的说明 15272955
捐赠科研通 4865714
什么是DOI,文献DOI怎么找? 2612313
邀请新用户注册赠送积分活动 1562449
关于科研通互助平台的介绍 1519671