亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A new attention-based 3D densely connected cross-stage-partial network for motor imagery classification in BCI

脑-机接口 计算机科学 运动表象 稳健性(进化) 人工智能 模式识别(心理学) 卷积神经网络 脑电图 特征提取 机器学习 心理学 生物化学 基因 精神科 化学
作者
Yintang Wen,Wei He,Yuyan Zhang
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:19 (5): 056026-056026 被引量:1
标识
DOI:10.1088/1741-2552/ac93b4
摘要

Abstract Objective . The challenge for motor imagery (MI) in brain-computer interface (BCI) systems is finding a reliable classification model that has high classification accuracy and excellent robustness. Currently, one of the main problems leading to degraded classification performance is the inaccuracy caused by nonstationarities and low signal-to-noise ratio in electroencephalogram (EEG) signals. Approach . This study proposes a novel attention-based 3D densely connected cross-stage-partial network (DCSPNet) model to achieve efficient EEG-based MI classification. This is an end-to-end classification model framework based on the convolutional neural network (CNN) architecture. In this framework, to fully utilize the complementary features in each dimension, the optimal features are extracted adaptively from the EEG signals through the spatial-spectral-temporal (SST) attention mechanism. The 3D DCSPNet is introduced to reduce the gradient loss by segmenting the extracted feature maps to strengthen the network learning capability. Additionally, the design of the densely connected structure increases the robustness of the network. Main results . The performance of the proposed method was evaluated using the BCI competition IV 2a and the high gamma dataset, achieving an average accuracy of 84.45% and 97.88%, respectively. Our method outperformed most state-of-the-art classification algorithms, demonstrating its effectiveness and strong generalization ability. Significance. The experimental results show that our method is promising for improving the performance of MI-BCI. As a general framework based on time-series classification, it can be applied to BCI-related fields.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7秒前
科研通AI6应助读书的时候采纳,获得10
14秒前
搜集达人应助读书的时候采纳,获得10
32秒前
金光一闪完成签到,获得积分10
46秒前
彭于晏应助读书的时候采纳,获得10
51秒前
1分钟前
1分钟前
传奇3应助读书的时候采纳,获得10
1分钟前
1分钟前
科研通AI6应助读书的时候采纳,获得10
1分钟前
科研通AI5应助读书的时候采纳,获得10
1分钟前
查查完成签到,获得积分10
1分钟前
科研通AI5应助读书的时候采纳,获得10
2分钟前
科研通AI5应助读书的时候采纳,获得10
2分钟前
Ava应助读书的时候采纳,获得10
2分钟前
科研通AI6应助读书的时候采纳,获得10
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
勤恳依霜发布了新的文献求助10
3分钟前
3分钟前
fufufu123完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
林利芳完成签到 ,获得积分0
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
5分钟前
香蕉觅云应助科研通管家采纳,获得10
5分钟前
5分钟前
5分钟前
冉亦完成签到,获得积分10
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
International Encyclopedia of Business Management 1000
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4935401
求助须知:如何正确求助?哪些是违规求助? 4202806
关于积分的说明 13058830
捐赠科研通 3977750
什么是DOI,文献DOI怎么找? 2179602
邀请新用户注册赠送积分活动 1195669
关于科研通互助平台的介绍 1107367