A new attention-based 3D densely connected cross-stage-partial network for motor imagery classification in BCI

脑-机接口 计算机科学 运动表象 稳健性(进化) 人工智能 模式识别(心理学) 卷积神经网络 脑电图 特征提取 机器学习 心理学 生物化学 基因 精神科 化学
作者
Yintang Wen,Wei He,Yuyan Zhang
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:19 (5): 056026-056026 被引量:1
标识
DOI:10.1088/1741-2552/ac93b4
摘要

Abstract Objective . The challenge for motor imagery (MI) in brain-computer interface (BCI) systems is finding a reliable classification model that has high classification accuracy and excellent robustness. Currently, one of the main problems leading to degraded classification performance is the inaccuracy caused by nonstationarities and low signal-to-noise ratio in electroencephalogram (EEG) signals. Approach . This study proposes a novel attention-based 3D densely connected cross-stage-partial network (DCSPNet) model to achieve efficient EEG-based MI classification. This is an end-to-end classification model framework based on the convolutional neural network (CNN) architecture. In this framework, to fully utilize the complementary features in each dimension, the optimal features are extracted adaptively from the EEG signals through the spatial-spectral-temporal (SST) attention mechanism. The 3D DCSPNet is introduced to reduce the gradient loss by segmenting the extracted feature maps to strengthen the network learning capability. Additionally, the design of the densely connected structure increases the robustness of the network. Main results . The performance of the proposed method was evaluated using the BCI competition IV 2a and the high gamma dataset, achieving an average accuracy of 84.45% and 97.88%, respectively. Our method outperformed most state-of-the-art classification algorithms, demonstrating its effectiveness and strong generalization ability. Significance. The experimental results show that our method is promising for improving the performance of MI-BCI. As a general framework based on time-series classification, it can be applied to BCI-related fields.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助whisper采纳,获得10
刚刚
3033完成签到,获得积分10
刚刚
乐乐应助杨雪妮采纳,获得10
1秒前
遐蝶发布了新的文献求助10
1秒前
1秒前
JamesPei应助随便取采纳,获得80
1秒前
yss发布了新的文献求助10
1秒前
健忘英姑发布了新的文献求助10
1秒前
yy完成签到,获得积分20
2秒前
2秒前
yang杨完成签到,获得积分10
2秒前
2秒前
活泼的烙完成签到 ,获得积分10
3秒前
漂亮的海瑶完成签到 ,获得积分10
3秒前
YY发布了新的文献求助10
3秒前
赘婿应助Wen3197312602采纳,获得10
3秒前
CipherSage应助uui采纳,获得10
3秒前
4秒前
GG完成签到,获得积分20
4秒前
5秒前
yuanquaner发布了新的文献求助10
5秒前
May发布了新的文献求助10
5秒前
微笑的尔蓝完成签到,获得积分10
5秒前
可爱的函函应助Zirong采纳,获得10
6秒前
Pom完成签到,获得积分10
6秒前
小章发布了新的文献求助10
6秒前
白冷之完成签到,获得积分10
6秒前
6秒前
情怀应助Otto Curious采纳,获得20
6秒前
dmm完成签到 ,获得积分10
6秒前
7秒前
艾玛发布了新的文献求助10
7秒前
银色的膜完成签到,获得积分10
8秒前
开朗洋葱完成签到,获得积分10
8秒前
8秒前
8秒前
贡菜选手完成签到,获得积分10
9秒前
聂sh发布了新的文献求助10
10秒前
10秒前
科研小狗完成签到 ,获得积分10
11秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950435
求助须知:如何正确求助?哪些是违规求助? 3495874
关于积分的说明 11079268
捐赠科研通 3226319
什么是DOI,文献DOI怎么找? 1783751
邀请新用户注册赠送积分活动 867787
科研通“疑难数据库(出版商)”最低求助积分说明 800942