A new attention-based 3D densely connected cross-stage-partial network for motor imagery classification in BCI

脑-机接口 计算机科学 运动表象 稳健性(进化) 人工智能 模式识别(心理学) 卷积神经网络 脑电图 特征提取 机器学习 心理学 生物化学 基因 精神科 化学
作者
Yintang Wen,Wei He,Yuyan Zhang
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:19 (5): 056026-056026 被引量:1
标识
DOI:10.1088/1741-2552/ac93b4
摘要

Abstract Objective . The challenge for motor imagery (MI) in brain-computer interface (BCI) systems is finding a reliable classification model that has high classification accuracy and excellent robustness. Currently, one of the main problems leading to degraded classification performance is the inaccuracy caused by nonstationarities and low signal-to-noise ratio in electroencephalogram (EEG) signals. Approach . This study proposes a novel attention-based 3D densely connected cross-stage-partial network (DCSPNet) model to achieve efficient EEG-based MI classification. This is an end-to-end classification model framework based on the convolutional neural network (CNN) architecture. In this framework, to fully utilize the complementary features in each dimension, the optimal features are extracted adaptively from the EEG signals through the spatial-spectral-temporal (SST) attention mechanism. The 3D DCSPNet is introduced to reduce the gradient loss by segmenting the extracted feature maps to strengthen the network learning capability. Additionally, the design of the densely connected structure increases the robustness of the network. Main results . The performance of the proposed method was evaluated using the BCI competition IV 2a and the high gamma dataset, achieving an average accuracy of 84.45% and 97.88%, respectively. Our method outperformed most state-of-the-art classification algorithms, demonstrating its effectiveness and strong generalization ability. Significance. The experimental results show that our method is promising for improving the performance of MI-BCI. As a general framework based on time-series classification, it can be applied to BCI-related fields.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
CipherSage应助小恐龙采纳,获得10
1秒前
方hh完成签到,获得积分10
2秒前
卡皮巴拉完成签到,获得积分10
2秒前
CipherSage应助CYJ采纳,获得10
2秒前
2秒前
hanshishengye发布了新的文献求助100
2秒前
卑微小哲完成签到,获得积分10
3秒前
赘婿应助yao采纳,获得30
3秒前
深情安青应助CHEN采纳,获得10
4秒前
羊羊羊完成签到,获得积分10
4秒前
赘婿应助壮观果汁采纳,获得10
4秒前
Zhi应助Chuwei采纳,获得10
4秒前
科研通AI6.1应助随意采纳,获得10
4秒前
王豆豆发布了新的文献求助10
4秒前
成就映秋完成签到,获得积分10
4秒前
化学喵完成签到 ,获得积分10
5秒前
5秒前
000v000发布了新的文献求助50
5秒前
chu完成签到,获得积分20
6秒前
deerning完成签到,获得积分10
6秒前
wyz完成签到 ,获得积分10
6秒前
Alice完成签到,获得积分10
6秒前
云馨完成签到,获得积分10
6秒前
Owen应助故里采纳,获得10
7秒前
张乐由完成签到,获得积分10
8秒前
8秒前
8秒前
归尘发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
8秒前
qq596完成签到,获得积分10
8秒前
小米应助chu采纳,获得10
10秒前
李爱国应助24采纳,获得10
10秒前
10秒前
轻松的芯完成签到 ,获得积分0
10秒前
量子星尘发布了新的文献求助10
10秒前
醉酒皮皮虾完成签到 ,获得积分10
11秒前
英俊的铭应助YXHTCM采纳,获得10
11秒前
11秒前
认真觅荷完成签到 ,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5774528
求助须知:如何正确求助?哪些是违规求助? 5618245
关于积分的说明 15436081
捐赠科研通 4907003
什么是DOI,文献DOI怎么找? 2640503
邀请新用户注册赠送积分活动 1588336
关于科研通互助平台的介绍 1543291