A new attention-based 3D densely connected cross-stage-partial network for motor imagery classification in BCI

脑-机接口 计算机科学 运动表象 稳健性(进化) 人工智能 模式识别(心理学) 卷积神经网络 脑电图 特征提取 机器学习 心理学 生物化学 基因 精神科 化学
作者
Yintang Wen,Wei He,Yuyan Zhang
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:19 (5): 056026-056026 被引量:1
标识
DOI:10.1088/1741-2552/ac93b4
摘要

Abstract Objective . The challenge for motor imagery (MI) in brain-computer interface (BCI) systems is finding a reliable classification model that has high classification accuracy and excellent robustness. Currently, one of the main problems leading to degraded classification performance is the inaccuracy caused by nonstationarities and low signal-to-noise ratio in electroencephalogram (EEG) signals. Approach . This study proposes a novel attention-based 3D densely connected cross-stage-partial network (DCSPNet) model to achieve efficient EEG-based MI classification. This is an end-to-end classification model framework based on the convolutional neural network (CNN) architecture. In this framework, to fully utilize the complementary features in each dimension, the optimal features are extracted adaptively from the EEG signals through the spatial-spectral-temporal (SST) attention mechanism. The 3D DCSPNet is introduced to reduce the gradient loss by segmenting the extracted feature maps to strengthen the network learning capability. Additionally, the design of the densely connected structure increases the robustness of the network. Main results . The performance of the proposed method was evaluated using the BCI competition IV 2a and the high gamma dataset, achieving an average accuracy of 84.45% and 97.88%, respectively. Our method outperformed most state-of-the-art classification algorithms, demonstrating its effectiveness and strong generalization ability. Significance. The experimental results show that our method is promising for improving the performance of MI-BCI. As a general framework based on time-series classification, it can be applied to BCI-related fields.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
bkagyin应助棠棠采纳,获得10
1秒前
bkagyin应助顾翩翩采纳,获得10
1秒前
郭佳怡发布了新的文献求助10
1秒前
2秒前
3秒前
3秒前
量子星尘发布了新的文献求助10
4秒前
能干砖家发布了新的文献求助10
4秒前
WU发布了新的文献求助10
4秒前
5秒前
5秒前
5秒前
量子星尘发布了新的文献求助10
6秒前
等等发布了新的文献求助10
7秒前
Jasper应助yxy采纳,获得10
7秒前
科研通AI6.1应助xiaoyu采纳,获得10
7秒前
7秒前
looklook发布了新的文献求助10
7秒前
8秒前
Fancy应助bubble采纳,获得30
9秒前
皮代谷发布了新的文献求助10
9秒前
陶逸豪发布了新的文献求助10
9秒前
阿九发布了新的文献求助10
9秒前
abcd完成签到,获得积分20
10秒前
10秒前
今后应助cjh采纳,获得10
10秒前
denny完成签到,获得积分20
11秒前
AAA房地产小王完成签到,获得积分10
11秒前
Meng发布了新的文献求助10
11秒前
11秒前
12秒前
大模型应助jeremyher采纳,获得10
13秒前
13秒前
AN应助WU采纳,获得10
14秒前
香蕉觅云应助WU采纳,获得10
14秒前
14秒前
15秒前
SciGPT应助发发呆采纳,获得10
15秒前
温纲完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5771462
求助须知:如何正确求助?哪些是违规求助? 5591687
关于积分的说明 15427521
捐赠科研通 4904775
什么是DOI,文献DOI怎么找? 2638990
邀请新用户注册赠送积分活动 1586782
关于科研通互助平台的介绍 1541792