Identification of potent small-molecule PCSK9 inhibitors based on quantitative structure-activity relationship, pharmacophore modeling, and molecular docking procedure

数量结构-活动关系 药效团 PCSK9 可欣 前蛋白转化酶 计算生物学 医学 化学 立体化学 低密度脂蛋白受体 胆固醇 生物化学 生物 脂蛋白
作者
Ali Mahmoudi,Aimee Butler,Maciej Banach,Tannaz Jamialahmadi,Amirhossein Sahebkar
出处
期刊:European Heart Journal [Oxford University Press]
卷期号:44 (Supplement_2)
标识
DOI:10.1093/eurheartj/ehad655.2796
摘要

Abstract Background Proprotein convertase subtilisin/kexin type 9 (PCSK9) attaches to the domain of LDL receptor (LDLR), diminishing LDL-C influx and LDLR cell surface presentation in hepatocytes, resulting in higher circulating LDL-C levels. PCSK9 dysfunction has been linked to lower levels of plasma LDLC and a decreased CHD risk. Purpose To identify a potent small-molecule PCSK9 inhibitor in compounds that are currently being studied in clinical trials. Methods We first performed chemical absorption, distribution, metabolism, excretion, and toxicity filtering of 9800 clinical trial compounds obtained from the ZINC 15 database using Lipinski's rule of five and achieved 3853 compounds. Two-dimensional (2D) Quantitative Structure-Activity Relationship (QSAR) was initiated by computing molecular descriptors and selecting important descriptors of 23 PCSK9 inhibitors. Multivariate calibration was performed with the partial least square regression (PLS) method with 18 compounds for training to design the QSAR model and five compounds for the test set to assess the model. The best latent variables (LV) (LV=6) with the lowest value of Root-Mean-Square Error of Cross-Validation (RMSECV) of 0.48 and leave-one-out cross-validation correlation coefficient (R2CV)=0.83 were obtained for the QSAR model. The low RMSEC (0.21) with high R²cal (0.966) indicates the probability of fit between the experimental data and the calibration model. Results Using QSAR analysis of 3853 compounds, 2635 had a pIC50<1 and were considered for pharmacophore screening. The PHASE module designed the pharmacophore hypothesis through multiple ligands. The top 14 compounds (pIC50>1) were defined as active, whereas nine (pIC50<1) were considered as an inactive set. Three five-point pharmacophore hypotheses achieved the highest score: DHHRR1, DHHRR2, and DHRRR1. The highest and best model with survival scores (5.365) was DHHRR1, comprising one hydrogen donor (D), two hydrophobic groups (H), and two rings of aromatic (R) features. We selected the molecules with a higher 1.5 fitness score (257 compounds) in pharmacophore screening (DHHRR1) for molecular docking screening.Molecular docking indicates that ZINC000051951669, with a binding affinity: of -13.2 kcal/mol and two H-bonds, has the highest binding to the PCSK9 protein. ZINC000011726230 with energy binding: -11.4 kcal/mol and three H-bonds, ZINC000068248147 with binding affinity: -10.7 kcal/mol and one H-bond, ZINC000029134440 with a binding affinity: -10.6 kcal/mol and four H-bonds were ranked next, respectively. Conclusion The archived molecules identified as inhibitory PCSK9 candidates, and especially ZINC000051951669 may therefore significantly inhibit PCSK9 and should be considered in the newly designed trials.Figure 1.The six-top docking compound against PCSK9 with lowest binding affinity. A) ZINC000051951669, B) ZINC000011726230, C) ZINC000068248147, D) ZINC000029134440, E) ZINC000000602086, F) ZINC000034630885.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助hhh采纳,获得10
1秒前
hug完成签到,获得积分10
1秒前
科研通AI5应助cxwong采纳,获得10
1秒前
1秒前
沉敛一生完成签到,获得积分10
1秒前
hhy发布了新的文献求助10
1秒前
starry发布了新的文献求助10
2秒前
Wxd0211发布了新的文献求助10
2秒前
章鱼完成签到,获得积分20
2秒前
2秒前
任医生完成签到,获得积分10
2秒前
3秒前
wyh完成签到,获得积分10
3秒前
lalala完成签到,获得积分10
4秒前
FCH2023完成签到,获得积分10
4秒前
66应助cuihf06采纳,获得10
4秒前
半生完成签到 ,获得积分20
5秒前
锦鲤云间月完成签到,获得积分10
5秒前
5秒前
5秒前
南宫士晋完成签到 ,获得积分10
5秒前
犹豫勇完成签到,获得积分10
6秒前
侦察兵发布了新的文献求助10
6秒前
英姑应助DK采纳,获得10
7秒前
快乐小白菜完成签到,获得积分10
7秒前
joy完成签到,获得积分10
7秒前
7秒前
7秒前
孟春纪事完成签到,获得积分10
8秒前
清爽忆山完成签到,获得积分10
8秒前
小马甲应助轻松的怜容采纳,获得10
8秒前
Grayball应助噢噢采纳,获得10
8秒前
言辞完成签到,获得积分10
8秒前
小柠檬完成签到,获得积分20
8秒前
8秒前
土豆丝完成签到 ,获得积分10
9秒前
念念完成签到,获得积分10
9秒前
乐乐应助starry采纳,获得10
9秒前
温暖冰珍完成签到 ,获得积分10
9秒前
淳之风完成签到,获得积分20
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672