Rethinking Supervision in Document Unwarping: A Self-consistent Flow-free Approach

计算机科学 整改 图像扭曲 杠杆(统计) 人工智能 数字化 失真(音乐) 情报检索 深度学习 计算机视觉 数据挖掘 物理 量子力学 功率(物理) 放大器 带宽(计算) 计算机网络
作者
Shaokai Liu,Hao Feng,Wengang Zhou
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tcsvt.2023.3336068
摘要

In recent years, the proliferation of smartphones has led to an upsurge in the digitization of document files via these portable devices. However, images captured by smartphones often suffer from distortions, thereby negatively affecting digital preservation and downstream applications. To address this issue, we introduce DRNet, a novel deep network for document image rectification. Our approach is based on three key designs. Firstly, we exploit the intrinsic geometric consistency inherent in document images to guide the learning process of distortion rectification. Secondly, we design a coarse-to-fine rectification network to leverage the representations derived from the distorted document image, thereby enhancing the rectification result. Thirdly, we propose a unique perspective for supervising the learning of rectification networks, where undistorted document images are employed for supervision, which is free of warping mesh as ground truth in existing methods. Technically, both low-level pixel alignment and high-level semantic alignment jointly contribute to the learning of the mapping relationship between deformed document images and distortion-free ones. We evaluate our method on the challenging DocUNet Benchmark dataset, where it sets a series of state-of-the-art records, demonstrating the superiority of our approach compared to existing learning-based solutions. Additionally, we conduct a comprehensive series of ablation experiments to further validate the effectiveness and merits of our method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
猪八戒完成签到 ,获得积分10
1秒前
完美世界应助manjusaka采纳,获得10
1秒前
量子星尘发布了新的文献求助10
1秒前
勤奋青寒发布了新的文献求助30
2秒前
刚好夏天完成签到 ,获得积分10
2秒前
大个应助海绵采纳,获得10
3秒前
xiying完成签到 ,获得积分10
3秒前
俏以完成签到,获得积分10
4秒前
4秒前
非而者厚应助飞飞888采纳,获得10
4秒前
5秒前
6秒前
lseven完成签到,获得积分10
6秒前
6秒前
fengmian完成签到,获得积分10
7秒前
坚定天佑完成签到,获得积分20
8秒前
9秒前
fangyuan发布了新的文献求助10
9秒前
不太想学习完成签到 ,获得积分10
10秒前
10秒前
Owen应助兜子采纳,获得10
11秒前
11秒前
寒冷怜南发布了新的文献求助10
11秒前
manjusaka发布了新的文献求助20
12秒前
王珺发布了新的文献求助10
13秒前
14秒前
overlood完成签到 ,获得积分10
15秒前
16秒前
tuyfytjt发布了新的文献求助10
17秒前
wangzheng发布了新的文献求助10
17秒前
当当发布了新的文献求助10
17秒前
火火发布了新的文献求助30
18秒前
冷艳薯片发布了新的文献求助20
18秒前
马里奥发布了新的文献求助10
21秒前
科科完成签到 ,获得积分10
21秒前
量子星尘发布了新的文献求助10
21秒前
24秒前
阿宁宁完成签到 ,获得积分10
27秒前
聪慧小霜应助火火采纳,获得10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
Modern Britain, 1750 to the Present (第2版) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4585938
求助须知:如何正确求助?哪些是违规求助? 4002681
关于积分的说明 12390812
捐赠科研通 3678747
什么是DOI,文献DOI怎么找? 2027592
邀请新用户注册赠送积分活动 1061082
科研通“疑难数据库(出版商)”最低求助积分说明 947447