Metal-organic framework-based materials as key components in electrocatalytic oxidation and reduction reactions

电催化剂 氧化还原 电化学 金属有机骨架 材料科学 催化作用 电化学能量转换 化学 无机化学 化学工程 纳米技术 电极 有机化学 物理化学 吸附 工程类
作者
Soheila Sanati,Ali Morsali,Hermenegildo Garcı́a
出处
期刊:Journal of Energy Chemistry [Elsevier BV]
卷期号:87: 540-567 被引量:37
标识
DOI:10.1016/j.jechem.2023.08.042
摘要

Studies have extensively addressed the development of electrocatalytic technologies for energy storage and conversion, fuel production, and environmental protection. Electrode processes such as different oxidation and reduction reactions play a vital and significant role in these technologies. In this regard, efficient, inexpensive, and stable electrocatalysts capable can significantly promote electrochemical reactions. Unique features of metal–organic frameworks (MOFs) such as their high porosity, tunable structure, size, and pore shape, high surface area, and redox properties have introduced them as an ideal electrocatalyst candidate. This review is thus aimed at elucidating the role of MOF-based materials (pristine, derivatives and composites) as efficient electrocatalysts in energy and sensing-related oxidation and reduction reactions such as oxygen reduction reaction (ORR), hydrogen oxidation reaction (HOR), carbon dioxide reduction reaction (CO2RR), urea oxidation reaction (UOR), alcohol oxidation reaction (AOR), nitrogen reduction reaction (NRR), and glucose oxidation reaction (GOR) in advanced energy and sensing devices. Also, the structure–property relationship of the electrocatalyst was elaborated for each electrocatalytic reaction. Finally, perspectives on the potential research topics for practical use of MOF-based electrocatalysts are addressed. The present review can improve the interest in MOF-based electrocatalysts to study different oxidation and reduction reactions in energy and sensing systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
lqz07发布了新的文献求助10
刚刚
芒琪完成签到,获得积分10
刚刚
shelemi发布了新的文献求助10
1秒前
syangZ完成签到,获得积分10
1秒前
hans应助Jiaxin_Wu采纳,获得10
1秒前
大方友容发布了新的文献求助10
1秒前
1秒前
1秒前
Jason完成签到,获得积分10
2秒前
顾某发布了新的文献求助10
2秒前
闲鱼嫌鱼咸完成签到,获得积分10
2秒前
3秒前
3秒前
嘚嘚发布了新的文献求助30
3秒前
4秒前
热心的皮完成签到 ,获得积分10
4秒前
4秒前
愉快的宛儿完成签到,获得积分10
4秒前
翁雁丝发布了新的文献求助10
4秒前
abtitw完成签到,获得积分10
4秒前
陈丫完成签到,获得积分10
5秒前
Tammy完成签到 ,获得积分10
5秒前
汛钥发布了新的文献求助10
5秒前
6秒前
安鲁完成签到,获得积分10
6秒前
何一非完成签到,获得积分10
6秒前
蔡一完成签到,获得积分10
7秒前
shelemi完成签到,获得积分10
7秒前
杨洋完成签到,获得积分10
7秒前
勤劳的沛山完成签到,获得积分10
8秒前
科研通AI2S应助guoguo采纳,获得10
8秒前
江阳宏发布了新的文献求助10
8秒前
ZZZZXXXX发布了新的文献求助10
8秒前
1111发布了新的文献求助10
8秒前
猴子完成签到,获得积分10
9秒前
syangZ完成签到,获得积分10
9秒前
Simran发布了新的文献求助100
10秒前
哼哼哈嘿完成签到,获得积分10
10秒前
彭于晏应助毛慢慢采纳,获得10
11秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Essentials of Performance Analysis in Sport 500
Measure Mean Linear Intercept 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3729613
求助须知:如何正确求助?哪些是违规求助? 3274653
关于积分的说明 9987684
捐赠科研通 2989926
什么是DOI,文献DOI怎么找? 1640809
邀请新用户注册赠送积分活动 779408
科研通“疑难数据库(出版商)”最低求助积分说明 748217