Can large language models provide useful feedback on research papers? A large-scale empirical analysis

计算机科学 比例(比率) 管道(软件) 同行评审 质量(理念) 实证研究 领域(数学) 同行反馈 反馈控制 数据科学 心理学 数学教育 政治学 数学 统计 工程类 地理 哲学 地图学 认识论 控制工程 纯数学 法学 程序设计语言
作者
Weixin Liang,Yuhui Zhang,Hancheng Cao,Binglu Wang,Daisy Yi Ding,Xiawei Yang,Kailas Vodrahalli,Siyu He,Daniel Scott Smith,Yian Yin,Daniel A. McFarland,James Zou
出处
期刊:Cornell University - arXiv 被引量:15
标识
DOI:10.48550/arxiv.2310.01783
摘要

Expert feedback lays the foundation of rigorous research. However, the rapid growth of scholarly production and intricate knowledge specialization challenge the conventional scientific feedback mechanisms. High-quality peer reviews are increasingly difficult to obtain. Researchers who are more junior or from under-resourced settings have especially hard times getting timely feedback. With the breakthrough of large language models (LLM) such as GPT-4, there is growing interest in using LLMs to generate scientific feedback on research manuscripts. However, the utility of LLM-generated feedback has not been systematically studied. To address this gap, we created an automated pipeline using GPT-4 to provide comments on the full PDFs of scientific papers. We evaluated the quality of GPT-4's feedback through two large-scale studies. We first quantitatively compared GPT-4's generated feedback with human peer reviewer feedback in 15 Nature family journals (3,096 papers in total) and the ICLR machine learning conference (1,709 papers). The overlap in the points raised by GPT-4 and by human reviewers (average overlap 30.85% for Nature journals, 39.23% for ICLR) is comparable to the overlap between two human reviewers (average overlap 28.58% for Nature journals, 35.25% for ICLR). The overlap between GPT-4 and human reviewers is larger for the weaker papers. We then conducted a prospective user study with 308 researchers from 110 US institutions in the field of AI and computational biology to understand how researchers perceive feedback generated by our GPT-4 system on their own papers. Overall, more than half (57.4%) of the users found GPT-4 generated feedback helpful/very helpful and 82.4% found it more beneficial than feedback from at least some human reviewers. While our findings show that LLM-generated feedback can help researchers, we also identify several limitations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助小钻风采纳,获得10
刚刚
kento发布了新的文献求助50
1秒前
3秒前
4秒前
jdwkhevb发布了新的文献求助10
5秒前
兮兮发布了新的文献求助10
7秒前
南吕完成签到,获得积分10
8秒前
Siyu发布了新的文献求助10
8秒前
zzz发布了新的文献求助10
8秒前
852应助cheyy采纳,获得10
8秒前
viper3完成签到,获得积分20
10秒前
感动的老虎完成签到,获得积分10
10秒前
汉堡包应助llalluan采纳,获得10
10秒前
桐桐应助卷卷516采纳,获得10
12秒前
mengtian给仁爱的雁荷的求助进行了留言
12秒前
任性的友桃关注了科研通微信公众号
13秒前
星辰大海应助Ning_采纳,获得10
14秒前
1953发布了新的文献求助10
15秒前
成就的白羊完成签到,获得积分10
15秒前
unborn完成签到 ,获得积分10
16秒前
fsdg驳回了煮梅应助
17秒前
cxwcn完成签到 ,获得积分10
17秒前
Siyu完成签到,获得积分10
18秒前
Cloud发布了新的文献求助10
26秒前
共享精神应助ihuhiu采纳,获得10
26秒前
28秒前
赘婿应助kk采纳,获得10
29秒前
阳光的静白完成签到,获得积分10
31秒前
Cloud完成签到,获得积分10
33秒前
lk完成签到 ,获得积分10
34秒前
星辰大海应助虚幻初之采纳,获得10
34秒前
36秒前
38秒前
40秒前
41秒前
世隐发布了新的文献求助10
42秒前
42秒前
42秒前
mm完成签到,获得积分10
42秒前
卷卷516发布了新的文献求助10
44秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3458771
求助须知:如何正确求助?哪些是违规求助? 3053518
关于积分的说明 9036928
捐赠科研通 2742726
什么是DOI,文献DOI怎么找? 1504524
科研通“疑难数据库(出版商)”最低求助积分说明 695319
邀请新用户注册赠送积分活动 694519