Can large language models provide useful feedback on research papers? A large-scale empirical analysis

计算机科学 比例(比率) 管道(软件) 同行评审 质量(理念) 实证研究 领域(数学) 同行反馈 反馈控制 数据科学 心理学 数学教育 政治学 数学 统计 工程类 地理 哲学 地图学 认识论 控制工程 纯数学 法学 程序设计语言
作者
Weixin Liang,Yuhui Zhang,Hancheng Cao,Binglu Wang,Daisy Yi Ding,Xiawei Yang,Kailas Vodrahalli,Siyu He,Daniel Scott Smith,Yian Yin,Daniel A. McFarland,James Zou
出处
期刊:Cornell University - arXiv 被引量:15
标识
DOI:10.48550/arxiv.2310.01783
摘要

Expert feedback lays the foundation of rigorous research. However, the rapid growth of scholarly production and intricate knowledge specialization challenge the conventional scientific feedback mechanisms. High-quality peer reviews are increasingly difficult to obtain. Researchers who are more junior or from under-resourced settings have especially hard times getting timely feedback. With the breakthrough of large language models (LLM) such as GPT-4, there is growing interest in using LLMs to generate scientific feedback on research manuscripts. However, the utility of LLM-generated feedback has not been systematically studied. To address this gap, we created an automated pipeline using GPT-4 to provide comments on the full PDFs of scientific papers. We evaluated the quality of GPT-4's feedback through two large-scale studies. We first quantitatively compared GPT-4's generated feedback with human peer reviewer feedback in 15 Nature family journals (3,096 papers in total) and the ICLR machine learning conference (1,709 papers). The overlap in the points raised by GPT-4 and by human reviewers (average overlap 30.85% for Nature journals, 39.23% for ICLR) is comparable to the overlap between two human reviewers (average overlap 28.58% for Nature journals, 35.25% for ICLR). The overlap between GPT-4 and human reviewers is larger for the weaker papers. We then conducted a prospective user study with 308 researchers from 110 US institutions in the field of AI and computational biology to understand how researchers perceive feedback generated by our GPT-4 system on their own papers. Overall, more than half (57.4%) of the users found GPT-4 generated feedback helpful/very helpful and 82.4% found it more beneficial than feedback from at least some human reviewers. While our findings show that LLM-generated feedback can help researchers, we also identify several limitations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助渤海少年采纳,获得10
刚刚
刚刚
1秒前
赘婿应助阿郎骑摩的丶采纳,获得10
1秒前
随机发布了新的文献求助10
2秒前
hubo发布了新的文献求助10
2秒前
gaoxun发布了新的文献求助10
3秒前
3秒前
4秒前
赶紧毕业完成签到,获得积分10
4秒前
1111完成签到,获得积分10
4秒前
ggjy发布了新的文献求助10
5秒前
空空发布了新的文献求助20
5秒前
5秒前
自由南珍发布了新的文献求助10
6秒前
生动的半芹完成签到 ,获得积分20
6秒前
6秒前
sb发布了新的文献求助10
6秒前
7秒前
kkaky完成签到,获得积分10
7秒前
星辰大海应助铁手无情采纳,获得10
7秒前
8秒前
领导范儿应助和和和采纳,获得10
8秒前
小前途发布了新的文献求助10
9秒前
董科研严发布了新的文献求助10
9秒前
科研通AI5应助cc采纳,获得10
9秒前
所所应助1111采纳,获得10
9秒前
10秒前
南风发布了新的文献求助10
11秒前
wwy发布了新的文献求助10
12秒前
赶紧毕业发布了新的文献求助10
12秒前
12秒前
13秒前
13秒前
14秒前
学习吧发布了新的文献求助10
14秒前
冰魂应助自由南珍采纳,获得10
14秒前
14秒前
15秒前
16秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Izeltabart tapatansine - AdisInsight 800
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3774229
求助须知:如何正确求助?哪些是违规求助? 3319961
关于积分的说明 10197633
捐赠科研通 3034461
什么是DOI,文献DOI怎么找? 1665041
邀请新用户注册赠送积分活动 796603
科研通“疑难数据库(出版商)”最低求助积分说明 757510