ConGMC: Consistency-Guided Multimodal Clustering via Mutual Information Maximin

聚类分析 计算机科学 相互信息 分拆(数论) 自编码 极小极大 人工智能 编码器 数据挖掘 约束聚类 一致性(知识库) 模糊聚类 模式识别(心理学) 机器学习 数学 CURE数据聚类算法 数学优化 人工神经网络 组合数学 操作系统
作者
Yiqiao Mao,Xiaoqiang Yan,Jiaming Liu,Yangdong Ye
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:26: 5131-5146 被引量:2
标识
DOI:10.1109/tmm.2023.3330093
摘要

Aligning multiple heterogeneous modalities in a parameter-sharing encoder to mine consistent information is a core idea of multimodal learning. However, two drawbacks hinder the development of such methods for clustering tasks: (1) each modality contains a considerable amount of superfluous information that cannot be aligned, impeding the mining of consistent information; (2) one-to-one alignment is contradictory to the clustering principle of minimum intra-cluster distance, leading to suboptimal clustering results. In this paper, we propose a novel Consistency-Guided Multimodal Clustering method (ConGMC) to remove superfluous information within the modalities unsupervised through information theory while improving one-to-one alignment for the clustering task. ConGMC contains multiple unimodal encoders and a multimodal shared encoder, where the former learns unimodal representation while the latter aligns multiple modalities to learn the cluster partition. Specifically, we first construct a mutual information maximin function to distinguish consistent information from superfluous information, in which the consistent and superfluous information are maximally retained and removed, respectively. Then a Clustering-Friendly Alignment strategy (CF-Align) is designed to address the contradiction between the alignment and clustering tasks. CF-Align dynamically adjusts the set of negative samples according to the learned cluster partition to avoid increasing the intra-cluster distance. Finally, we consider the cluster partition as a consistent constraint to optimize the multimodal shared encoder, enabling consistent information to guide the training process iteratively. Moreover, a variational optimization algorithm is proposed to ensure that ConGMC converges to a local optimum. Numerous experimental results on twelve real-world datasets validate that the proposed ConGMC method outperforms the state-of-the-art multimodal clustering methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gfbh发布了新的文献求助10
1秒前
二九十二完成签到,获得积分10
3秒前
七堇发布了新的文献求助10
4秒前
本本完成签到 ,获得积分10
4秒前
zhy完成签到,获得积分10
5秒前
胡图完成签到,获得积分10
5秒前
hhhhh完成签到,获得积分10
6秒前
钱念波完成签到,获得积分10
6秒前
拉长的万恶完成签到,获得积分10
6秒前
elisa828发布了新的文献求助10
6秒前
7秒前
7秒前
miao完成签到,获得积分10
11秒前
11秒前
wuxunxun2015完成签到,获得积分10
11秒前
12秒前
开心蛋挞发布了新的文献求助10
12秒前
12秒前
胖胖发布了新的文献求助10
13秒前
阳光彩虹小白马完成签到 ,获得积分10
14秒前
John发布了新的文献求助10
14秒前
热心易绿完成签到 ,获得积分10
14秒前
15秒前
老神在在完成签到,获得积分10
16秒前
开朗的慕儿完成签到,获得积分10
18秒前
Summer完成签到,获得积分10
18秒前
18秒前
zhang发布了新的文献求助10
18秒前
18秒前
哈喽小雪发布了新的文献求助10
19秒前
昀宇完成签到 ,获得积分10
20秒前
可爱的函函应助呱呱采纳,获得10
21秒前
21秒前
PJ发布了新的文献求助30
22秒前
白色风车完成签到,获得积分10
22秒前
yang完成签到,获得积分10
22秒前
FashionBoy应助呼呼采纳,获得10
24秒前
JY发布了新的文献求助20
24秒前
七堇完成签到,获得积分10
25秒前
可爱的函函应助飞快的珩采纳,获得10
25秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 890
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3761138
求助须知:如何正确求助?哪些是违规求助? 3305118
关于积分的说明 10132330
捐赠科研通 3019134
什么是DOI,文献DOI怎么找? 1657982
邀请新用户注册赠送积分活动 791747
科研通“疑难数据库(出版商)”最低求助积分说明 754634