MDNNSyn: A Multi-Modal Deep Learning Framework for Drug Synergy Prediction

计算机科学 情态动词 人工智能 深度学习 机器学习 化学 高分子化学
作者
Lei Li,Haitao Li,Tseren-Onolt Ishdorj,Chun-Hou Zheng,Yansen Su
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (10): 6225-6236
标识
DOI:10.1109/jbhi.2024.3421916
摘要

Synergistic drug combination prediction tasks based on the computational models have been widely studied and applied in the cancer field. However, most of models only consider the interactions between drug pairs and specific cell lines, without taking into account the multiple biological relationships of drug-drug and cell line-cell line that also largely affect synergistic mechanisms. To this end, here we propose a multi-modal deep learning framework, termed MDNNSyn, which adequately applies multi-source information and trains multi-modal features to infer potential synergistic drug combinations. MDNNSyn extracts topology modality features by implementing the multi-layer hypergraph neural network on drug synergy hypergraph and constructs semantic modality features through similarity strategy. A multi-modal fusion network layer with gated neural network is then employed for synergy score prediction. MDNNSyn is compared to five classic and state-of-the-art prediction methods on DrugCombDB and Oncology-Screen datasets. The model achieves area under the curve (AUC) scores of 0.8682 and 0.9013 on two datasets, an improvement of 3.70 % and 2.71 % over the second-best model. Case study indicates that MDNNSyn is capable of detecting potential synergistic drug combinations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Otorhino完成签到 ,获得积分10
2秒前
Jasper应助hihi采纳,获得10
4秒前
小木虫启航完成签到,获得积分10
4秒前
4秒前
雪ノ下詩乃完成签到,获得积分10
5秒前
小王院士发布了新的文献求助10
8秒前
共产主义接班人完成签到,获得积分10
8秒前
cloud发布了新的文献求助10
9秒前
SciGPT应助nini采纳,获得10
10秒前
轻松的纸鹤完成签到,获得积分10
10秒前
冷艳广山完成签到,获得积分10
11秒前
c程序语言发布了新的文献求助30
12秒前
秋半梦完成签到 ,获得积分10
12秒前
JamesPei应助JJQ采纳,获得10
12秒前
阅遍SCI完成签到,获得积分10
13秒前
14秒前
Aaron完成签到,获得积分10
14秒前
pluto应助炎晨采纳,获得20
15秒前
16秒前
吴哔哔发布了新的文献求助10
18秒前
wanci应助nuonuo采纳,获得10
19秒前
22秒前
淡淡文博发布了新的文献求助10
22秒前
上官若男应助啦啦啦采纳,获得10
23秒前
威武大将军完成签到,获得积分10
23秒前
cloud完成签到,获得积分10
24秒前
科研通AI2S应助Don采纳,获得30
25秒前
26秒前
27秒前
Hello应助科研通管家采纳,获得10
27秒前
科研通AI2S应助科研通管家采纳,获得10
27秒前
科研通AI2S应助科研通管家采纳,获得10
27秒前
慕青应助科研通管家采纳,获得10
27秒前
27秒前
27秒前
27秒前
李健应助科研通管家采纳,获得10
27秒前
科研通AI2S应助科研通管家采纳,获得10
27秒前
27秒前
在水一方应助科研通管家采纳,获得10
27秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3735903
求助须知:如何正确求助?哪些是违规求助? 3279592
关于积分的说明 10016324
捐赠科研通 2996292
什么是DOI,文献DOI怎么找? 1644012
邀请新用户注册赠送积分活动 781709
科研通“疑难数据库(出版商)”最低求助积分说明 749425