Towards a survival risk prediction model for metastatic NSCLC patients on durvalumab using whole-lung CT radiomics

无线电技术 医学 杜瓦卢马布 一致性 比例危险模型 肿瘤科 内科学 总体生存率 列线图 队列 百分位 生存分析 放射科 免疫疗法 癌症 无容量 统计 数学
作者
Kedar A. Patwardhan,Harish RaviPrakash,Νικόλαος Νικολάου,Ignacio González‐García,José Domingo Salazar,Paul Metcalfe,Joachim Reischl
出处
期刊:Frontiers in Immunology [Frontiers Media SA]
卷期号:15
标识
DOI:10.3389/fimmu.2024.1383644
摘要

Background Existing criteria for predicting patient survival from immunotherapy are primarily centered on the PD-L1 status of patients. We tested the hypothesis that noninvasively captured baseline whole-lung radiomics features from CT images, baseline clinical parameters, combined with advanced machine learning approaches, can help to build models of patient survival that compare favorably with PD-L1 status for predicting ‘less-than-median-survival risk’ in the metastatic NSCLC setting for patients on durvalumab. With a total of 1062 patients, inclusive of model training and validation, this is the largest such study yet. Methods To ensure a sufficient sample size, we combined data from treatment arms of three metastatic NSCLC studies. About 80% of this data was used for model training, and the remainder was held-out for validation. We first trained two independent models; Model-C trained to predict survival using clinical data; and Model-R trained to predict survival using whole-lung radiomics features. Finally, we created Model-C+R which leveraged both clinical and radiomics features. Results The classification accuracy (for median survival) of Model-C, Model-R, and Model-C+R was 63%, 55%, and 68% respectively. Sensitivity analysis of survival prediction across different training and validation cohorts showed concordance indices ([95 percentile]) of 0.64 ([0.63, 0.65]), 0.60 ([0.59, 0.60]), and 0.66 ([0.65,0.67]), respectively. We additionally evaluated generalization of these models on a comparable cohort of 144 patients from an independent study, demonstrating classification accuracies of 65%, 62%, and 72% respectively. Conclusion Machine Learning models combining baseline whole-lung CT radiomic and clinical features may be a useful tool for patient selection in immunotherapy. Further validation through prospective studies is needed.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天快乐应助尊敬的青易采纳,获得10
1秒前
1秒前
JamesPei应助刘十萌采纳,获得10
2秒前
希望天下0贩的0应助BCS采纳,获得10
3秒前
3秒前
玛卡巴卡完成签到,获得积分10
4秒前
核桃发布了新的文献求助30
5秒前
一线西风发布了新的文献求助10
5秒前
nen发布了新的文献求助10
6秒前
在水一方应助野火197采纳,获得10
6秒前
qduxl完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
慕青应助帆帆采纳,获得10
10秒前
11秒前
11秒前
11秒前
11秒前
11秒前
11秒前
12秒前
灵巧的新烟完成签到,获得积分10
12秒前
12秒前
丘比特应助科研通管家采纳,获得10
12秒前
脑洞疼应助科研通管家采纳,获得10
12秒前
慕青应助科研通管家采纳,获得10
12秒前
无花果应助科研通管家采纳,获得10
12秒前
思源应助科研通管家采纳,获得10
12秒前
小蘑菇应助123采纳,获得10
12秒前
传奇3应助大力的图图采纳,获得10
12秒前
充电宝应助科研通管家采纳,获得10
13秒前
大模型应助科研通管家采纳,获得10
13秒前
CipherSage应助科研通管家采纳,获得10
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
Jasper应助科研通管家采纳,获得10
13秒前
FashionBoy应助科研通管家采纳,获得10
13秒前
打打应助科研通管家采纳,获得10
13秒前
13秒前
斯文败类应助科研通管家采纳,获得30
13秒前
李爱国应助科研通管家采纳,获得10
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5778529
求助须知:如何正确求助?哪些是违规求助? 5642377
关于积分的说明 15449784
捐赠科研通 4910209
什么是DOI,文献DOI怎么找? 2642497
邀请新用户注册赠送积分活动 1590273
关于科研通互助平台的介绍 1544622