Towards a survival risk prediction model for metastatic NSCLC patients on durvalumab using whole-lung CT radiomics

无线电技术 医学 杜瓦卢马布 一致性 比例危险模型 肿瘤科 内科学 总体生存率 列线图 队列 百分位 生存分析 放射科 免疫疗法 癌症 无容量 统计 数学
作者
Kedar A. Patwardhan,Harish RaviPrakash,Νικόλαος Νικολάου,Ignacio González‐García,José Domingo Salazar,Paul Metcalfe,Joachim Reischl
出处
期刊:Frontiers in Immunology [Frontiers Media SA]
卷期号:15
标识
DOI:10.3389/fimmu.2024.1383644
摘要

Background Existing criteria for predicting patient survival from immunotherapy are primarily centered on the PD-L1 status of patients. We tested the hypothesis that noninvasively captured baseline whole-lung radiomics features from CT images, baseline clinical parameters, combined with advanced machine learning approaches, can help to build models of patient survival that compare favorably with PD-L1 status for predicting ‘less-than-median-survival risk’ in the metastatic NSCLC setting for patients on durvalumab. With a total of 1062 patients, inclusive of model training and validation, this is the largest such study yet. Methods To ensure a sufficient sample size, we combined data from treatment arms of three metastatic NSCLC studies. About 80% of this data was used for model training, and the remainder was held-out for validation. We first trained two independent models; Model-C trained to predict survival using clinical data; and Model-R trained to predict survival using whole-lung radiomics features. Finally, we created Model-C+R which leveraged both clinical and radiomics features. Results The classification accuracy (for median survival) of Model-C, Model-R, and Model-C+R was 63%, 55%, and 68% respectively. Sensitivity analysis of survival prediction across different training and validation cohorts showed concordance indices ([95 percentile]) of 0.64 ([0.63, 0.65]), 0.60 ([0.59, 0.60]), and 0.66 ([0.65,0.67]), respectively. We additionally evaluated generalization of these models on a comparable cohort of 144 patients from an independent study, demonstrating classification accuracies of 65%, 62%, and 72% respectively. Conclusion Machine Learning models combining baseline whole-lung CT radiomic and clinical features may be a useful tool for patient selection in immunotherapy. Further validation through prospective studies is needed.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
JCSY应助酥酥采纳,获得10
1秒前
1秒前
平常的茗茗完成签到,获得积分10
2秒前
呆萌语梦发布了新的文献求助10
2秒前
3秒前
4秒前
4秒前
bkagyin应助优秀的枫叶采纳,获得10
5秒前
田様应助宋灵竹采纳,获得10
5秒前
5秒前
6秒前
小魏完成签到,获得积分10
6秒前
宇文风行发布了新的文献求助10
6秒前
6秒前
所所应助梦想成神采纳,获得10
6秒前
危险份子发布了新的文献求助10
6秒前
等待的三问完成签到,获得积分10
7秒前
7秒前
7秒前
hui发布了新的文献求助10
7秒前
安子发布了新的文献求助10
8秒前
8秒前
8秒前
orixero应助肥肥菲采纳,获得10
8秒前
9秒前
李哈哈发布了新的文献求助10
9秒前
义气笑卉发布了新的文献求助20
10秒前
小丁1127应助rachel03采纳,获得30
10秒前
少年应助xiao采纳,获得10
10秒前
10秒前
白鸽发布了新的文献求助10
10秒前
guo关闭了guo文献求助
11秒前
汉堡包应助小吴同学采纳,获得10
13秒前
13秒前
Alan发布了新的文献求助10
13秒前
一一应助顺心冰枫采纳,获得10
14秒前
smz发布了新的文献求助10
14秒前
专注的问寒应助执着的海采纳,获得20
14秒前
深情安青应助wenwen采纳,获得10
14秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695131
求助须知:如何正确求助?哪些是违规求助? 5100385
关于积分的说明 15215391
捐赠科研通 4851561
什么是DOI,文献DOI怎么找? 2602454
邀请新用户注册赠送积分活动 1554227
关于科研通互助平台的介绍 1512186