Leveraging Limited Experimental Data with Machine Learning: Differentiating a Methyl from an Ethyl Group in the Corey–Bakshi–Shibata Reduction

化学 催化作用 选择性 对映体过量 超分子化学 基质(水族馆) 图形 组合化学 机器学习 有机化学 对映选择合成 计算机科学 理论计算机科学 分子 海洋学 地质学
作者
Osvaldo José Ribeiro Pereira,Marcel Ruth,Dennis Gerbig,Raffael C. Wende,Peter R. Schreiner
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
标识
DOI:10.1021/jacs.4c01286
摘要

We present a case study on how to improve an existing metal-free catalyst for a particularly difficult reaction, namely, the Corey–Bakshi–Shibata (CBS) reduction of butanone, which constitutes the classic and prototypical challenge of being able to differentiate a methyl from an ethyl group. As there are no known strategies on how to address this challenge, we leveraged the power of machine learning by constructing a realistic (for a typical laboratory) small, albeit high-quality, data set of about 100 reactions (run in triplicate) that we used to train a model in combination with a key-intermediate graph (of substrate and catalyst) to predict the differences in Gibbs activation energies ΔΔG‡ of the enantiomeric reaction paths. With the help of this model, we were able to select and subsequently screen a small selection of catalysts and increase the selectivity for the CBS reduction of butanone to 80% enantiomeric excess (ee), the highest possible value achieved to date for this substrate with a metal-free catalyst, thereby also exceeding the best available enzymatic systems (64% ee) and the selectivity with Corey's original catalyst (60% ee). This translates into a >50% improvement in relative ΔG‡ from 0.9 to 1.4 kcal mol–1. We underscore the transformative potential of machine learning in accelerating catalyst design because we rely on a manageable small data set and a key-intermediate graph representing a combination of catalyst and substrate graphs in lieu of a transition-state model. Our results highlight the synergy of synthetic chemistry and data-centric approaches and provide a blueprint for future catalyst optimization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小小完成签到,获得积分10
刚刚
善学以致用应助麦秋采纳,获得10
3秒前
林夕发布了新的文献求助10
4秒前
爱吃猫的鱼完成签到,获得积分10
5秒前
二两白茶完成签到,获得积分10
6秒前
7秒前
皮皮发布了新的文献求助10
7秒前
alltoowell完成签到,获得积分0
7秒前
树池完成签到,获得积分10
8秒前
阿包完成签到,获得积分20
10秒前
马桶盖盖子完成签到 ,获得积分10
11秒前
13秒前
Biofly526完成签到,获得积分10
14秒前
顾矜应助阿包采纳,获得10
14秒前
起风了给起风了的求助进行了留言
15秒前
麦秋发布了新的文献求助10
18秒前
中九完成签到 ,获得积分10
21秒前
22秒前
萧水白应助missy采纳,获得10
25秒前
酷波er应助谢偲采纳,获得10
26秒前
28秒前
hongw_liu完成签到,获得积分10
31秒前
32秒前
科研通AI2S应助xxx采纳,获得10
32秒前
糖豆豆吃豆豆完成签到,获得积分10
36秒前
38秒前
无悔呀完成签到,获得积分10
39秒前
wy.he完成签到,获得积分0
39秒前
小二郎应助科研通管家采纳,获得10
42秒前
zzzyyyuuu完成签到 ,获得积分10
42秒前
科研通AI2S应助科研通管家采纳,获得10
42秒前
方赫然应助科研通管家采纳,获得50
42秒前
科研通AI2S应助科研通管家采纳,获得10
42秒前
diu应助科研通管家采纳,获得10
42秒前
田様应助科研通管家采纳,获得10
42秒前
秣旎应助科研通管家采纳,获得10
42秒前
折木应助科研通管家采纳,获得10
42秒前
华仔应助科研通管家采纳,获得10
42秒前
ding应助科研通管家采纳,获得10
43秒前
Gauss应助科研通管家采纳,获得30
43秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
Data Structures and Algorithms in Java: A Project-Based Approach 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3269216
求助须知:如何正确求助?哪些是违规求助? 2908715
关于积分的说明 8346677
捐赠科研通 2578940
什么是DOI,文献DOI怎么找? 1402510
科研通“疑难数据库(出版商)”最低求助积分说明 655455
邀请新用户注册赠送积分活动 634616