Leveraging Limited Experimental Data with Machine Learning: Differentiating a Methyl from an Ethyl Group in the Corey–Bakshi–Shibata Reduction

化学 催化作用 选择性 对映体过量 超分子化学 基质(水族馆) 图形 组合化学 机器学习 有机化学 对映选择合成 计算机科学 理论计算机科学 分子 海洋学 地质学
作者
Osvaldo José Ribeiro Pereira,Marcel Ruth,Dennis Gerbig,Raffael C. Wende,Peter R. Schreiner
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
标识
DOI:10.1021/jacs.4c01286
摘要

We present a case study on how to improve an existing metal-free catalyst for a particularly difficult reaction, namely, the Corey–Bakshi–Shibata (CBS) reduction of butanone, which constitutes the classic and prototypical challenge of being able to differentiate a methyl from an ethyl group. As there are no known strategies on how to address this challenge, we leveraged the power of machine learning by constructing a realistic (for a typical laboratory) small, albeit high-quality, data set of about 100 reactions (run in triplicate) that we used to train a model in combination with a key-intermediate graph (of substrate and catalyst) to predict the differences in Gibbs activation energies ΔΔG‡ of the enantiomeric reaction paths. With the help of this model, we were able to select and subsequently screen a small selection of catalysts and increase the selectivity for the CBS reduction of butanone to 80% enantiomeric excess (ee), the highest possible value achieved to date for this substrate with a metal-free catalyst, thereby also exceeding the best available enzymatic systems (64% ee) and the selectivity with Corey's original catalyst (60% ee). This translates into a >50% improvement in relative ΔG‡ from 0.9 to 1.4 kcal mol–1. We underscore the transformative potential of machine learning in accelerating catalyst design because we rely on a manageable small data set and a key-intermediate graph representing a combination of catalyst and substrate graphs in lieu of a transition-state model. Our results highlight the synergy of synthetic chemistry and data-centric approaches and provide a blueprint for future catalyst optimization.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
沉默红牛完成签到,获得积分20
1秒前
shhoing应助wey采纳,获得10
2秒前
2秒前
大猪完成签到 ,获得积分10
3秒前
ding应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
5秒前
5秒前
领导范儿应助科研通管家采纳,获得10
5秒前
元谷雪应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
5秒前
浮游应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
桐桐应助科研通管家采纳,获得10
5秒前
BareBear应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
BareBear应助科研通管家采纳,获得10
5秒前
元谷雪应助科研通管家采纳,获得10
5秒前
欣喜健柏发布了新的文献求助10
9秒前
LuckyM发布了新的文献求助10
10秒前
10秒前
12秒前
13秒前
认真路灯完成签到 ,获得积分10
15秒前
18秒前
飘逸秋荷完成签到,获得积分10
18秒前
万能图书馆应助爱学习采纳,获得10
19秒前
JamesPei应助打工人采纳,获得10
21秒前
李健的粉丝团团长应助Cd采纳,获得10
22秒前
tracy发布了新的文献求助10
23秒前
27秒前
sanxuan完成签到 ,获得积分10
28秒前
研友_Z7XY28完成签到,获得积分10
30秒前
烧炭匠完成签到,获得积分10
30秒前
Stella应助隐形的凡阳采纳,获得10
31秒前
打工人发布了新的文献求助10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557486
求助须知:如何正确求助?哪些是违规求助? 4642578
关于积分的说明 14668531
捐赠科研通 4583986
什么是DOI,文献DOI怎么找? 2514487
邀请新用户注册赠送积分活动 1488830
关于科研通互助平台的介绍 1459454