A new approach of integrating industry prior knowledge for HAZOP interaction

危险和可操作性研究 计算机科学 领域(数学分析) 领域知识 过程(计算) 危害 工艺安全 任务(项目管理) 序列(生物学) 数据挖掘 人工智能 工程类 可操作性 在制品 软件工程 系统工程 运营管理 生物 操作系统 遗传学 数学分析 有机化学 化学 数学
作者
Huaqi Zhang,Beike Zhang,Dong Gao
出处
期刊:Journal of Loss Prevention in The Process Industries [Elsevier]
卷期号:82: 105005-105005 被引量:3
标识
DOI:10.1016/j.jlp.2023.105005
摘要

Accidents often occur in the petrochemical industry, which have a negative impact on society and the environment. Learning Process Safety Knowledge (PSK) from accident cases is essential to prevent accidents and improve safety level. Hazard and Operability Analysis (HAZOP) is a popular hazard risk analysis method. Its report contains large-scale PSK, which can provide safety analysis and decision support for the industry. Subject to the characteristics of PSK, existing researches mine them in the form of sequence labeling. However, there are two intractable problems that cause the PSK mined by the model to be inaccurate. (1) PSK in HAZOP is domain specific, which is rare or even absent in general-domain texts. (2) The entity boundaries are ambiguous. Most domain-specific entities for HAZOP lack boundary characters. Inaccurate security knowledge is not acceptable from the perspective of process safety engineering. To solve the problems, we present a PSK mining architecture with External Lexicon Prior knowledge called EDPMA, EDPMA is prior knowledge-based multi-task HAZOP knowledge mining model. Specifically, EDPMA consists of prior knowledge constructor and sequence labeling model. The prior knowledge constructor expresses prior knowledge in the form of word embedding by three steps. For the sequence annotation model, we improve its embedding and decoding layers. The former incorporated the word vectors generated by the prior knowledge constructor, and the latter added the task of entity boundary prediction. We conduct multiple evaluation experiments on HAZOP datasets. The experimental results show that the accuracy, recall and F1-score of the EDPMA model are 92.92%, 91.85% and 92.38% respectively, which is better than the existing research. Our study represents a meaningful attempt to introduce prior knowledge in HAZOP knowledge mining and makes an important contribution to intelligence the field of process safety.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
九秋霜完成签到,获得积分10
1秒前
Zyy发布了新的文献求助10
1秒前
赘婿应助南城雨落采纳,获得10
1秒前
二二完成签到 ,获得积分10
2秒前
稳重紫蓝完成签到 ,获得积分10
2秒前
2秒前
3秒前
劲秉应助www采纳,获得10
3秒前
yueyue完成签到,获得积分10
3秒前
3秒前
李爱国应助zT采纳,获得10
4秒前
大方弘文发布了新的文献求助10
5秒前
5秒前
ppp完成签到,获得积分10
5秒前
5秒前
无花果应助ForeverYou采纳,获得10
5秒前
砰砰砰砰啪!完成签到 ,获得积分10
6秒前
呆鸥完成签到,获得积分10
6秒前
TYY完成签到,获得积分10
6秒前
Paopaoxuan应助Wlx采纳,获得10
7秒前
7秒前
柒玖完成签到 ,获得积分10
7秒前
自由的蛋挞完成签到,获得积分10
7秒前
华仔应助华子的五A替身采纳,获得10
8秒前
科研通AI2S应助大意的天空采纳,获得10
8秒前
Lucas应助Zyy采纳,获得10
8秒前
zdy完成签到,获得积分10
8秒前
伏坎完成签到,获得积分10
8秒前
8秒前
zhuqiming完成签到,获得积分10
8秒前
9秒前
你好CDY发布了新的文献求助10
9秒前
争当科研巨匠完成签到,获得积分10
9秒前
爆米花应助Sunshine采纳,获得10
9秒前
仝哈哈完成签到,获得积分10
9秒前
123发布了新的文献求助10
9秒前
饭小心发布了新的文献求助10
10秒前
10秒前
agdnk发布了新的文献求助10
10秒前
高分求助中
Genetics: From Genes to Genomes 3000
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Diabetes: miniguías Asklepios 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3471985
求助须知:如何正确求助?哪些是违规求助? 3064982
关于积分的说明 9091495
捐赠科研通 2755704
什么是DOI,文献DOI怎么找? 1512148
邀请新用户注册赠送积分活动 698670
科研通“疑难数据库(出版商)”最低求助积分说明 698537