AMARL: An Attention-Based Multiagent Reinforcement Learning Approach to the Min-Max Multiple Traveling Salesmen Problem

强化学习 计算机科学 推论 规范化(社会学) 人工智能 变压器 机器学习 电压 工程类 社会学 人类学 电气工程
作者
Hao Gao,Xing Zhou,Xin Xu,Yixing Lan,Yongqian Xiao
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (7): 9758-9772 被引量:12
标识
DOI:10.1109/tnnls.2023.3236629
摘要

In recent years, the multiple traveling salesmen problem (MTSP or multiple TSP) has received increasing research interest and one of its main applications is coordinated multirobot mission planning, such as cooperative search and rescue tasks. However, it is still challenging to solve MTSP with improved inference efficiency as well as solution quality in varying situations, e.g., different city positions, different numbers of cities, or agents. In this article, we propose an attention-based multiagent reinforcement learning (AMARL) approach, which is based on the gated transformer feature representations for min-max multiple TSPs. The state feature extraction network in our proposed approach adopts the gated transformer architecture with reordering layer normalization (LN) and a new gate mechanism. It aggregates fixed-dimensional attention-based state features irrespective of the number of agents and cities. The action space of our proposed approach is designed to decouple the interaction of agents' simultaneous decision-making. At each time step, only one agent is assigned to a non-zero action so that the action selection strategy can be transferred across tasks with different numbers of agents and cities. Extensive experiments on min-max multiple TSPs were conducted to illustrate the effectiveness and advantages of the proposed approach. Compared with six representative algorithms, our proposed approach achieves state-of-the-art performance in solution quality and inference efficiency. In particular, the proposed approach is suitable for tasks with different numbers of agents or cities without extra learning, and experimental results demonstrate that the proposed approach realizes powerful transfer capability across tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
卡卡龍特完成签到,获得积分10
刚刚
jaya完成签到,获得积分10
1秒前
Jiali发布了新的文献求助10
1秒前
1秒前
今后应助王宁采纳,获得10
1秒前
2秒前
sunshine发布了新的文献求助10
2秒前
犀牛完成签到,获得积分20
2秒前
孤海未蓝发布了新的文献求助10
3秒前
leungya完成签到,获得积分10
3秒前
文艺的芫完成签到,获得积分10
3秒前
领导范儿应助ZBW采纳,获得10
3秒前
旺仔先生完成签到,获得积分0
4秒前
4秒前
Answer完成签到,获得积分10
4秒前
Lucas应助颜云尔采纳,获得10
4秒前
卡卡龍特发布了新的文献求助10
4秒前
领导范儿应助mrz采纳,获得10
5秒前
NexusExplorer应助Giroro_roro采纳,获得10
5秒前
琉璃完成签到 ,获得积分10
5秒前
一粟的粉r发布了新的文献求助10
6秒前
深情安青应助Jiang采纳,获得10
6秒前
李健的小迷弟应助筋筋子采纳,获得10
6秒前
ipan918完成签到,获得积分10
6秒前
jaya发布了新的文献求助10
6秒前
迅速雨琴发布了新的文献求助10
7秒前
所所应助乔乔采纳,获得10
7秒前
自然1111发布了新的文献求助10
7秒前
7秒前
8秒前
wcy完成签到 ,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
Lucas选李华完成签到 ,获得积分10
9秒前
9秒前
9秒前
orixero应助Hannah采纳,获得10
9秒前
poem发布了新的文献求助10
10秒前
我是老大应助xiaomili采纳,获得10
10秒前
搜集达人应助青青在努力采纳,获得10
11秒前
11秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986953
求助须知:如何正确求助?哪些是违规求助? 3529326
关于积分的说明 11244328
捐赠科研通 3267695
什么是DOI,文献DOI怎么找? 1803880
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808620