已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

AMARL: An Attention-Based Multiagent Reinforcement Learning Approach to the Min-Max Multiple Traveling Salesmen Problem

强化学习 计算机科学 推论 规范化(社会学) 人工智能 变压器 机器学习 电压 工程类 人类学 电气工程 社会学
作者
Hao Gao,Xing Zhou,Xin Xu,Yixing Lan,Yongqian Xiao
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (7): 9758-9772 被引量:12
标识
DOI:10.1109/tnnls.2023.3236629
摘要

In recent years, the multiple traveling salesmen problem (MTSP or multiple TSP) has received increasing research interest and one of its main applications is coordinated multirobot mission planning, such as cooperative search and rescue tasks. However, it is still challenging to solve MTSP with improved inference efficiency as well as solution quality in varying situations, e.g., different city positions, different numbers of cities, or agents. In this article, we propose an attention-based multiagent reinforcement learning (AMARL) approach, which is based on the gated transformer feature representations for min-max multiple TSPs. The state feature extraction network in our proposed approach adopts the gated transformer architecture with reordering layer normalization (LN) and a new gate mechanism. It aggregates fixed-dimensional attention-based state features irrespective of the number of agents and cities. The action space of our proposed approach is designed to decouple the interaction of agents' simultaneous decision-making. At each time step, only one agent is assigned to a non-zero action so that the action selection strategy can be transferred across tasks with different numbers of agents and cities. Extensive experiments on min-max multiple TSPs were conducted to illustrate the effectiveness and advantages of the proposed approach. Compared with six representative algorithms, our proposed approach achieves state-of-the-art performance in solution quality and inference efficiency. In particular, the proposed approach is suitable for tasks with different numbers of agents or cities without extra learning, and experimental results demonstrate that the proposed approach realizes powerful transfer capability across tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
3秒前
充电宝应助璐洋采纳,获得10
4秒前
我是化学魔子呀完成签到,获得积分10
5秒前
想疯发布了新的文献求助10
7秒前
yuaner发布了新的文献求助10
7秒前
斯文败类应助科研通管家采纳,获得10
7秒前
英姑应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
充电宝应助科研通管家采纳,获得10
8秒前
8秒前
天天快乐应助MlUhTkE采纳,获得10
8秒前
钱钱钱完成签到,获得积分20
8秒前
11秒前
11秒前
11秒前
15秒前
westlife发布了新的文献求助10
18秒前
18秒前
一一一发布了新的文献求助10
19秒前
shjyang完成签到,获得积分0
20秒前
CipherSage应助大气伯云采纳,获得10
20秒前
happy完成签到,获得积分10
23秒前
在水一方应助阮人雄采纳,获得10
25秒前
爱笑乌龟完成签到,获得积分10
26秒前
上官若男应助yana采纳,获得10
26秒前
一一一完成签到,获得积分10
28秒前
28秒前
29秒前
29秒前
31秒前
在水一方应助爱笑乌龟采纳,获得10
32秒前
孤独念柏完成签到,获得积分10
33秒前
lyfing发布了新的文献求助10
33秒前
33秒前
雨季发布了新的文献求助10
34秒前
再干一杯发布了新的文献求助10
34秒前
37秒前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3129862
求助须知:如何正确求助?哪些是违规求助? 2780645
关于积分的说明 7749422
捐赠科研通 2435969
什么是DOI,文献DOI怎么找? 1294402
科研通“疑难数据库(出版商)”最低求助积分说明 623673
版权声明 600570