AMARL: An Attention-Based Multiagent Reinforcement Learning Approach to the Min-Max Multiple Traveling Salesmen Problem

强化学习 计算机科学 推论 规范化(社会学) 人工智能 变压器 机器学习 电压 工程类 人类学 电气工程 社会学
作者
Hao Gao,Xing Zhou,Xin Xu,Yixing Lan,Yongqian Xiao
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (7): 9758-9772 被引量:12
标识
DOI:10.1109/tnnls.2023.3236629
摘要

In recent years, the multiple traveling salesmen problem (MTSP or multiple TSP) has received increasing research interest and one of its main applications is coordinated multirobot mission planning, such as cooperative search and rescue tasks. However, it is still challenging to solve MTSP with improved inference efficiency as well as solution quality in varying situations, e.g., different city positions, different numbers of cities, or agents. In this article, we propose an attention-based multiagent reinforcement learning (AMARL) approach, which is based on the gated transformer feature representations for min-max multiple TSPs. The state feature extraction network in our proposed approach adopts the gated transformer architecture with reordering layer normalization (LN) and a new gate mechanism. It aggregates fixed-dimensional attention-based state features irrespective of the number of agents and cities. The action space of our proposed approach is designed to decouple the interaction of agents' simultaneous decision-making. At each time step, only one agent is assigned to a non-zero action so that the action selection strategy can be transferred across tasks with different numbers of agents and cities. Extensive experiments on min-max multiple TSPs were conducted to illustrate the effectiveness and advantages of the proposed approach. Compared with six representative algorithms, our proposed approach achieves state-of-the-art performance in solution quality and inference efficiency. In particular, the proposed approach is suitable for tasks with different numbers of agents or cities without extra learning, and experimental results demonstrate that the proposed approach realizes powerful transfer capability across tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形的捕发布了新的文献求助50
1秒前
1秒前
你好夏天完成签到 ,获得积分10
1秒前
lxg完成签到,获得积分10
2秒前
张朝欣完成签到,获得积分10
3秒前
152522发布了新的文献求助10
5秒前
煜祺完成签到,获得积分10
5秒前
在水一方应助丘奇采纳,获得10
6秒前
烧烤发布了新的文献求助10
6秒前
clcl发布了新的文献求助10
6秒前
油炸丸子发布了新的文献求助10
6秒前
桐桐应助优美寒荷采纳,获得10
7秒前
大模型应助阿尔宙斯采纳,获得10
7秒前
9秒前
我不看月亮完成签到,获得积分20
9秒前
共享精神应助糟糕的绮露采纳,获得10
9秒前
一心完成签到,获得积分10
11秒前
fmh完成签到,获得积分10
11秒前
12秒前
HuangJunfei完成签到 ,获得积分10
12秒前
慕青应助我马上到采纳,获得10
13秒前
丘比特应助科研通管家采纳,获得10
13秒前
xzn1123应助科研通管家采纳,获得10
13秒前
研友_VZG7GZ应助油炸丸子采纳,获得10
13秒前
香蕉觅云应助科研通管家采纳,获得10
13秒前
科研通AI6应助科研通管家采纳,获得10
13秒前
科研通AI6应助科研通管家采纳,获得10
13秒前
SciGPT应助科研通管家采纳,获得10
13秒前
田様应助科研通管家采纳,获得10
13秒前
浮游应助科研通管家采纳,获得10
13秒前
14秒前
上官若男应助科研通管家采纳,获得10
14秒前
xzn1123应助科研通管家采纳,获得10
14秒前
wxyshare应助科研通管家采纳,获得10
14秒前
领导范儿应助科研通管家采纳,获得10
14秒前
英俊的铭应助科研通管家采纳,获得10
14秒前
共享精神应助科研通管家采纳,获得10
14秒前
科研通AI6应助科研通管家采纳,获得10
14秒前
xzn1123应助科研通管家采纳,获得10
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
茶艺师试题库(初级、中级、高级、技师、高级技师) 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertebrate Palaeontology, 5th Edition 570
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5360485
求助须知:如何正确求助?哪些是违规求助? 4491088
关于积分的说明 13981391
捐赠科研通 4393724
什么是DOI,文献DOI怎么找? 2413597
邀请新用户注册赠送积分活动 1406430
关于科研通互助平台的介绍 1380915