已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

AMARL: An Attention-Based Multiagent Reinforcement Learning Approach to the Min-Max Multiple Traveling Salesmen Problem

强化学习 计算机科学 推论 规范化(社会学) 人工智能 变压器 机器学习 电压 工程类 人类学 电气工程 社会学
作者
Hao Gao,Xing Zhou,Xin Xu,Yixing Lan,Yongqian Xiao
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (7): 9758-9772 被引量:12
标识
DOI:10.1109/tnnls.2023.3236629
摘要

In recent years, the multiple traveling salesmen problem (MTSP or multiple TSP) has received increasing research interest and one of its main applications is coordinated multirobot mission planning, such as cooperative search and rescue tasks. However, it is still challenging to solve MTSP with improved inference efficiency as well as solution quality in varying situations, e.g., different city positions, different numbers of cities, or agents. In this article, we propose an attention-based multiagent reinforcement learning (AMARL) approach, which is based on the gated transformer feature representations for min-max multiple TSPs. The state feature extraction network in our proposed approach adopts the gated transformer architecture with reordering layer normalization (LN) and a new gate mechanism. It aggregates fixed-dimensional attention-based state features irrespective of the number of agents and cities. The action space of our proposed approach is designed to decouple the interaction of agents' simultaneous decision-making. At each time step, only one agent is assigned to a non-zero action so that the action selection strategy can be transferred across tasks with different numbers of agents and cities. Extensive experiments on min-max multiple TSPs were conducted to illustrate the effectiveness and advantages of the proposed approach. Compared with six representative algorithms, our proposed approach achieves state-of-the-art performance in solution quality and inference efficiency. In particular, the proposed approach is suitable for tasks with different numbers of agents or cities without extra learning, and experimental results demonstrate that the proposed approach realizes powerful transfer capability across tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
学术小白w完成签到,获得积分10
1秒前
tangtang关注了科研通微信公众号
1秒前
2秒前
科研通AI6应助凶狠的源智采纳,获得10
3秒前
5秒前
传奇3应助hygge采纳,获得10
7秒前
7秒前
8秒前
8秒前
caoyonggang发布了新的文献求助10
9秒前
馆长给开心的访卉的求助进行了留言
9秒前
puppy发布了新的文献求助10
11秒前
科研通AI6应助嘛吉采纳,获得10
13秒前
13秒前
科研通AI6应助优雅的帅哥采纳,获得10
13秒前
小小牛马完成签到 ,获得积分10
15秒前
15秒前
16秒前
陈小白完成签到,获得积分10
16秒前
17秒前
ltttaaaa发布了新的文献求助10
17秒前
陆旻发布了新的文献求助10
18秒前
小小鹅发布了新的文献求助10
18秒前
tangtang发布了新的文献求助10
18秒前
幸运的姜姜完成签到 ,获得积分10
18秒前
科研民工李完成签到,获得积分10
21秒前
23秒前
24秒前
小小牛马关注了科研通微信公众号
24秒前
26秒前
26秒前
执着无声完成签到 ,获得积分10
30秒前
30秒前
31秒前
隐形曼青应助ranj采纳,获得10
32秒前
科研通AI2S应助worrywar采纳,获得10
35秒前
明月清风发布了新的文献求助10
39秒前
幽默枫发布了新的文献求助10
39秒前
清爽的曼易完成签到,获得积分10
40秒前
41秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
Huang's Catheter Ablation of Cardiac Arrhythmias 5th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5126032
求助须知:如何正确求助?哪些是违规求助? 4329689
关于积分的说明 13491683
捐赠科研通 4164660
什么是DOI,文献DOI怎么找? 2283026
邀请新用户注册赠送积分活动 1284135
关于科研通互助平台的介绍 1223522