AMARL: An Attention-Based Multiagent Reinforcement Learning Approach to the Min-Max Multiple Traveling Salesmen Problem

强化学习 计算机科学 推论 规范化(社会学) 人工智能 变压器 机器学习 电压 工程类 人类学 电气工程 社会学
作者
Hao Gao,Xing Zhou,Xin Xu,Yixing Lan,Yongqian Xiao
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (7): 9758-9772 被引量:12
标识
DOI:10.1109/tnnls.2023.3236629
摘要

In recent years, the multiple traveling salesmen problem (MTSP or multiple TSP) has received increasing research interest and one of its main applications is coordinated multirobot mission planning, such as cooperative search and rescue tasks. However, it is still challenging to solve MTSP with improved inference efficiency as well as solution quality in varying situations, e.g., different city positions, different numbers of cities, or agents. In this article, we propose an attention-based multiagent reinforcement learning (AMARL) approach, which is based on the gated transformer feature representations for min-max multiple TSPs. The state feature extraction network in our proposed approach adopts the gated transformer architecture with reordering layer normalization (LN) and a new gate mechanism. It aggregates fixed-dimensional attention-based state features irrespective of the number of agents and cities. The action space of our proposed approach is designed to decouple the interaction of agents' simultaneous decision-making. At each time step, only one agent is assigned to a non-zero action so that the action selection strategy can be transferred across tasks with different numbers of agents and cities. Extensive experiments on min-max multiple TSPs were conducted to illustrate the effectiveness and advantages of the proposed approach. Compared with six representative algorithms, our proposed approach achieves state-of-the-art performance in solution quality and inference efficiency. In particular, the proposed approach is suitable for tasks with different numbers of agents or cities without extra learning, and experimental results demonstrate that the proposed approach realizes powerful transfer capability across tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冷冷完成签到 ,获得积分10
3秒前
量子星尘发布了新的文献求助10
4秒前
xixi很困完成签到 ,获得积分10
11秒前
大模型应助Hiuge采纳,获得10
12秒前
糖宝完成签到 ,获得积分10
13秒前
光亮若翠完成签到,获得积分10
16秒前
落雪完成签到 ,获得积分10
17秒前
Ava应助风中的棒棒糖采纳,获得10
19秒前
风起枫落完成签到 ,获得积分10
19秒前
可靠诗筠完成签到 ,获得积分10
19秒前
故意的怜晴完成签到 ,获得积分10
21秒前
一粟的粉r完成签到 ,获得积分10
22秒前
Jimmy_King完成签到 ,获得积分10
33秒前
tangzanwayne完成签到 ,获得积分10
33秒前
35秒前
心灵美草丛完成签到,获得积分10
36秒前
652183758完成签到 ,获得积分10
37秒前
39秒前
热带蚂蚁完成签到 ,获得积分10
39秒前
1002SHIB完成签到,获得积分10
42秒前
43秒前
43秒前
nihaolaojiu完成签到,获得积分10
43秒前
sheetung完成签到,获得积分10
43秒前
科研通AI6应助科研通管家采纳,获得10
43秒前
麦田麦兜完成签到,获得积分10
45秒前
洋洋发布了新的文献求助20
47秒前
lling完成签到 ,获得积分10
50秒前
51秒前
Lny发布了新的文献求助20
53秒前
孟寐以求完成签到 ,获得积分10
58秒前
1111完成签到 ,获得积分10
1分钟前
su完成签到 ,获得积分0
1分钟前
wBw完成签到,获得积分0
1分钟前
耍酷寻双完成签到 ,获得积分10
1分钟前
善良的蛋挞完成签到,获得积分10
1分钟前
FFFFFF完成签到 ,获得积分10
1分钟前
Moonchild完成签到 ,获得积分10
1分钟前
陈M雯完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4612892
求助须知:如何正确求助?哪些是违规求助? 4017940
关于积分的说明 12436878
捐赠科研通 3700243
什么是DOI,文献DOI怎么找? 2040634
邀请新用户注册赠送积分活动 1073400
科研通“疑难数据库(出版商)”最低求助积分说明 957029