Delving into Masked Autoencoders for Multi-Label Thorax Disease Classification

计算机科学 可扩展性 卷积神经网络 人工智能 变压器 深度学习 上下文图像分类 像素 医学影像学 人工神经网络 机器学习 模式识别(心理学) 学习迁移 图像(数学) 数据库 量子力学 物理 电压
作者
Junfei Xiao,Yang Bai,Alan Yuille,Zongwei Zhou
标识
DOI:10.1109/wacv56688.2023.00358
摘要

Vision Transformer (ViT) has become one of the most popular neural architectures due to its great scalability, computational efficiency, and compelling performance in many vision tasks. However, ViT has shown inferior performance to Convolutional Neural Network (CNN) on medical tasks due to its data-hungry nature and the lack of an-notated medical data. In this paper, we pre-train ViTs on 266,340 chest X-rays using Masked Autoencoders (MAE) which reconstruct missing pixels from a small part of each image. For comparison, CNNs are also pre-trained on the same 266,340 X-rays using advanced self-supervised methods (e.g. MoCo v2). The results show that our pre-trained ViT performs comparably (sometimes better) to the state-of-the-art CNN (DenseNet-121) for multi-label thorax dis-ease classification. This performance is attributed to the strong recipes extracted from our empirical studies for pre-training and fine-tuning ViT. The pre-training recipe signifies that medical reconstruction requires a much smaller proportion of an image (10% vs. 25%) and a more moderate random resized crop range (0.5∼1.0 vs. 0.2∼1.0) compared with natural imaging. Furthermore, we remark that in-domain transfer learning is preferred whenever possible. The fine-tuning recipe discloses that layer-wise LR decay, RandAug magnitude, and DropPath rate are significant factors to consider. We hope that this study can direct future research on the application of Transformers to a larger variety of medical imaging tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
elgar612发布了新的文献求助10
3秒前
7秒前
Eves关注了科研通微信公众号
10秒前
kittykitten完成签到 ,获得积分10
11秒前
13秒前
糊涂的勒完成签到,获得积分10
14秒前
15秒前
子衿发布了新的文献求助10
15秒前
心随以动发布了新的文献求助10
17秒前
17秒前
18秒前
18秒前
超级的鹅完成签到,获得积分10
19秒前
gzy780819发布了新的文献求助10
19秒前
19秒前
XIXI完成签到,获得积分20
20秒前
20秒前
毛豆爸爸应助violetyjm采纳,获得20
22秒前
22秒前
22秒前
22秒前
He发布了新的文献求助10
23秒前
23秒前
子铭完成签到,获得积分10
23秒前
Owen应助马某某某某某采纳,获得10
24秒前
song发布了新的文献求助10
25秒前
布丁完成签到 ,获得积分10
27秒前
27秒前
27秒前
XIE发布了新的文献求助50
28秒前
zz发布了新的文献求助10
29秒前
毛豆爸爸应助violetyjm采纳,获得20
30秒前
李朝富发布了新的文献求助10
30秒前
心随以动发布了新的文献求助10
30秒前
31秒前
Cao完成签到 ,获得积分10
32秒前
genomed应助愫问采纳,获得20
33秒前
郑岩狭完成签到 ,获得积分10
33秒前
优雅雁菱完成签到,获得积分10
33秒前
34秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139127
求助须知:如何正确求助?哪些是违规求助? 2790013
关于积分的说明 7793363
捐赠科研通 2446416
什么是DOI,文献DOI怎么找? 1301093
科研通“疑难数据库(出版商)”最低求助积分说明 626106
版权声明 601102