UAV-supported intelligent truth discovery to achieve low-cost communications in mobile crowd sensing

计算机科学 方案(数学) 基本事实 实时计算 数据收集 数据挖掘 人工智能 数学 统计 数学分析
作者
Bai Jing,Jinsong Gui,Guosheng Huang,Shaobo Zhang,Anfeng Liu
出处
期刊:Digital Communications and Networks [KeAi]
卷期号:10 (4): 837-852 被引量:15
标识
DOI:10.1016/j.dcan.2023.02.001
摘要

Unmanned and aerial systems as interactors among different system components for communications, have opened up great opportunities for truth data discovery in Mobile Crowd Sensing (MCS) which has not been properly solved in the literature. In this paper, an Unmanned Aerial Vehicles-supported Intelligent Truth Discovery (UAV-ITD) scheme is proposed to obtain truth data at low-cost communications for MCS. The main innovations of the UAV-ITD scheme are as follows: (1) UAV-ITD scheme takes the first step in employing UAV joint Deep Matrix Factorization (DMF) to discover truth data based on the trust mechanism for an Information Elicitation Without Verification (IEWV) problem in MCS. (2) This paper for the first time introduces a truth data discovery scheme that only needs to collect a part of n data samples to infer the data of the entire network with high accuracy, which saves more communication costs than most previous data collection schemes, where they collect n or kn data samples. Finally, we conducted extensive experiments to evaluate the UAV-ITD scheme. The results show that compared with previous schemes, our scheme can reduce estimated truth error by 52.25%–96.09%, increase the accuracy of workers' trust evaluation by 0.68–61.82 times, and save recruitment costs by 24.08%–54.15% in truth data discovery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
eric888应助一丢丢采纳,获得200
2秒前
小蘑菇应助贺万万采纳,获得10
2秒前
望舒完成签到 ,获得积分10
4秒前
Ning00000发布了新的文献求助10
4秒前
5秒前
巡风完成签到,获得积分20
5秒前
6秒前
6秒前
yuhongsun完成签到,获得积分10
7秒前
7秒前
量子星尘发布了新的文献求助150
7秒前
包容寻菡发布了新的文献求助10
7秒前
7秒前
7秒前
8秒前
太阳完成签到 ,获得积分10
8秒前
totoo2021发布了新的文献求助10
8秒前
Lucas应助baokehui采纳,获得10
8秒前
JamesPei应助还好采纳,获得30
9秒前
科研通AI6应助11采纳,获得10
9秒前
9秒前
arizaki7发布了新的文献求助10
10秒前
壮观若南发布了新的文献求助10
11秒前
tqmx发布了新的文献求助10
11秒前
chengzhiheng发布了新的文献求助10
11秒前
12秒前
初见完成签到 ,获得积分10
12秒前
平凡完成签到,获得积分10
12秒前
12秒前
传奇3应助znn123采纳,获得10
13秒前
13秒前
14秒前
14秒前
15秒前
筱璞羲发布了新的文献求助10
15秒前
曦曦完成签到 ,获得积分10
15秒前
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 1200
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
By R. Scott Kretchmar - Practical Philosophy of Sport and Physical Activity - 2nd (second) Edition: 2nd (second) Edition 666
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4942890
求助须知:如何正确求助?哪些是违规求助? 4208298
关于积分的说明 13081999
捐赠科研通 3987523
什么是DOI,文献DOI怎么找? 2183163
邀请新用户注册赠送积分活动 1198757
关于科研通互助平台的介绍 1111169