UAV-supported intelligent truth discovery to achieve low-cost communications in mobile crowd sensing

计算机科学 方案(数学) 基本事实 实时计算 数据收集 数据挖掘 人工智能 数学 统计 数学分析
作者
Bai Jing,Jinsong Gui,Guosheng Huang,Shaobo Zhang,Anfeng Liu
出处
期刊:Digital Communications and Networks [Elsevier]
卷期号:10 (4): 837-852 被引量:12
标识
DOI:10.1016/j.dcan.2023.02.001
摘要

Unmanned and aerial systems as interactors among different system components for communications, have opened up great opportunities for truth data discovery in Mobile Crowd Sensing (MCS) which has not been properly solved in the literature. In this paper, an Unmanned Aerial Vehicles-supported Intelligent Truth Discovery (UAV-ITD) scheme is proposed to obtain truth data at low-cost communications for MCS. The main innovations of the UAV-ITD scheme are as follows: (1) UAV-ITD scheme takes the first step in employing UAV joint Deep Matrix Factorization (DMF) to discover truth data based on the trust mechanism for an Information Elicitation Without Verification (IEWV) problem in MCS. (2) This paper for the first time introduces a truth data discovery scheme that only needs to collect a part of n data samples to infer the data of the entire network with high accuracy, which saves more communication costs than most previous data collection schemes, where they collect n or kn data samples. Finally, we conducted extensive experiments to evaluate the UAV-ITD scheme. The results show that compared with previous schemes, our scheme can reduce estimated truth error by 52.25%–96.09%, increase the accuracy of workers' trust evaluation by 0.68–61.82 times, and save recruitment costs by 24.08%–54.15% in truth data discovery.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
t通发布了新的文献求助10
1秒前
2秒前
2秒前
songyy发布了新的文献求助10
2秒前
3秒前
一一应助北海阳光小子采纳,获得10
4秒前
hinata完成签到,获得积分10
4秒前
ZQ完成签到,获得积分10
4秒前
缓慢夜阑完成签到,获得积分10
4秒前
曼曼发布了新的文献求助10
4秒前
5秒前
5秒前
大橙子发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
7秒前
jphu发布了新的文献求助10
7秒前
CCC完成签到 ,获得积分10
7秒前
yyydd发布了新的文献求助10
8秒前
蝉鸣发布了新的文献求助10
9秒前
9秒前
wanci应助羊羊羊采纳,获得10
9秒前
9秒前
maomao发布了新的文献求助10
10秒前
10秒前
斌斌发布了新的文献求助10
10秒前
酷酷的数据线完成签到,获得积分10
11秒前
11秒前
11秒前
12秒前
Jasper应助ykl采纳,获得30
13秒前
章如豹发布了新的文献求助10
14秒前
liii完成签到,获得积分10
14秒前
15秒前
Zenia发布了新的文献求助10
16秒前
酷波er应助xfy采纳,获得10
16秒前
艾米尼发布了新的文献求助10
16秒前
Akim应助沉静的颦采纳,获得10
16秒前
小小小何完成签到 ,获得积分10
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3543142
求助须知:如何正确求助?哪些是违规求助? 3120548
关于积分的说明 9343199
捐赠科研通 2818601
什么是DOI,文献DOI怎么找? 1549668
邀请新用户注册赠送积分活动 722221
科研通“疑难数据库(出版商)”最低求助积分说明 713076