One-step preparation of efficient SiO2/PVDF membrane by sol-gel strategy for oil/water separation under harsh environments

正硅酸乙酯 接触角 化学工程 材料科学 生物污染 乳状液 化学 纳米技术 复合材料 工程类 生物化学
作者
Yuanlu Xu,Yueling Yu,Chunyang Song,Yi Zhu,Chengwen Song,Xinfei Fan,Zai-Jin You
出处
期刊:Polymer [Elsevier]
卷期号:260: 125402-125402 被引量:14
标识
DOI:10.1016/j.polymer.2022.125402
摘要

The environmental pollution and resource loss caused by oil-water emulsion bring a severe threat to human's life. Superhydrophobic/superoleophilic membranes are considered as a wise choice for separating water-in-oil emulsions. However, the large-scale production of acid and alkali resistant, sustainable and efficient membranes remains an enormous challenge. In this study, a superhydrophobic/superoleophilic SiO2/PVDF (SP) membrane was prepared through facile sol-gel strategy in one step. Hydrophobic SiO2 nanoparticles (NPs) were modified on PVDF membrane by hydrolysis and polycondensation reaction of tetraethyl orthosilicate (TEOS) and hexadecyltrimethoxysilane (HDTMS) as precursors. The low surface energy of the hydrophobic SiO2 NPs and the micro/nano rough structures similar to the waxy protuberances of lotus leaves constructed by nano-SiO2 played a crucial role in obtaining the superhydrophobic/superoleophilic property. The water contact angle (WCA) of the optimal SP membrane reached 152.4 ± 1.4°, while the oil droplets completely permeated the membrane in 1 s. Also, the fluxes of SP membrane for petroleum ether/water, n-hexane/water, and n-heptane/water were 3886 ± 140, 3551 ± 146 and 3763 ± 57 L m−2 h−1, respectively, and the separation efficiencies were stable above 99.7%. Moreover, the SP membrane showed excellent separation effects and stability under different chemical environments. Most significantly, it also displayed anti-fouling performance like lotus leaves. The results indicated that its separation efficiency still remained above 97% after 20 cycles. Therefore, these outstanding results ensured the possibility of large-scale production and practical application of the SP membrane.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
自由的过客完成签到,获得积分10
1秒前
转角一起走完成签到,获得积分20
1秒前
22完成签到,获得积分10
1秒前
1秒前
Zn应助伊丽莎白打工采纳,获得10
2秒前
江月渡完成签到,获得积分10
3秒前
研友_RLN0vZ发布了新的文献求助10
3秒前
虾仁发布了新的文献求助10
3秒前
mmx发布了新的文献求助10
3秒前
4秒前
ff发布了新的文献求助10
5秒前
图南完成签到,获得积分20
5秒前
zhl发布了新的文献求助10
5秒前
今后应助喜洋洋采纳,获得10
6秒前
赘婿应助yin采纳,获得10
6秒前
7秒前
7秒前
8秒前
邢夏之发布了新的文献求助10
8秒前
8秒前
欣喜书桃完成签到,获得积分10
9秒前
9秒前
陈木木完成签到,获得积分10
9秒前
刘旭阳发布了新的文献求助10
9秒前
9秒前
hhhhhhh发布了新的文献求助10
9秒前
长情洙完成签到,获得积分10
10秒前
Lilac完成签到 ,获得积分10
10秒前
10秒前
10秒前
MissXia完成签到,获得积分10
10秒前
NUNKI完成签到,获得积分10
10秒前
迅速星星完成签到,获得积分10
10秒前
科研废物发布了新的文献求助10
11秒前
ltc完成签到,获得积分10
11秒前
科研通AI5应助诚c采纳,获得10
11秒前
Mrrr发布了新的文献求助10
11秒前
sganthem完成签到,获得积分10
11秒前
12秒前
哦吼完成签到,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759