One-step preparation of efficient SiO2/PVDF membrane by sol-gel strategy for oil/water separation under harsh environments

正硅酸乙酯 接触角 化学工程 材料科学 生物污染 乳状液 化学 纳米技术 复合材料 工程类 生物化学
作者
Yuanlu Xu,Yueling Yu,Chunyang Song,Yi Zhu,Chengwen Song,Xinfei Fan,Zai-Jin You
出处
期刊:Polymer [Elsevier]
卷期号:260: 125402-125402 被引量:14
标识
DOI:10.1016/j.polymer.2022.125402
摘要

The environmental pollution and resource loss caused by oil-water emulsion bring a severe threat to human's life. Superhydrophobic/superoleophilic membranes are considered as a wise choice for separating water-in-oil emulsions. However, the large-scale production of acid and alkali resistant, sustainable and efficient membranes remains an enormous challenge. In this study, a superhydrophobic/superoleophilic SiO2/PVDF (SP) membrane was prepared through facile sol-gel strategy in one step. Hydrophobic SiO2 nanoparticles (NPs) were modified on PVDF membrane by hydrolysis and polycondensation reaction of tetraethyl orthosilicate (TEOS) and hexadecyltrimethoxysilane (HDTMS) as precursors. The low surface energy of the hydrophobic SiO2 NPs and the micro/nano rough structures similar to the waxy protuberances of lotus leaves constructed by nano-SiO2 played a crucial role in obtaining the superhydrophobic/superoleophilic property. The water contact angle (WCA) of the optimal SP membrane reached 152.4 ± 1.4°, while the oil droplets completely permeated the membrane in 1 s. Also, the fluxes of SP membrane for petroleum ether/water, n-hexane/water, and n-heptane/water were 3886 ± 140, 3551 ± 146 and 3763 ± 57 L m−2 h−1, respectively, and the separation efficiencies were stable above 99.7%. Moreover, the SP membrane showed excellent separation effects and stability under different chemical environments. Most significantly, it also displayed anti-fouling performance like lotus leaves. The results indicated that its separation efficiency still remained above 97% after 20 cycles. Therefore, these outstanding results ensured the possibility of large-scale production and practical application of the SP membrane.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助球球采纳,获得10
4秒前
6秒前
Vin完成签到 ,获得积分10
8秒前
10秒前
球球完成签到,获得积分20
10秒前
Ava应助owo采纳,获得10
11秒前
13秒前
14秒前
天天快乐应助孟长歌采纳,获得10
15秒前
科研通AI2S应助开朗的之卉采纳,获得10
17秒前
18秒前
19秒前
真实的黑夜完成签到,获得积分10
20秒前
汐颜完成签到,获得积分10
22秒前
无花果应助abao采纳,获得10
22秒前
葛根发布了新的文献求助20
23秒前
24秒前
24秒前
ding应助科研通管家采纳,获得20
25秒前
小二郎应助科研通管家采纳,获得10
25秒前
所所应助科研通管家采纳,获得10
25秒前
小蘑菇应助科研通管家采纳,获得10
25秒前
琉璃苣应助科研通管家采纳,获得20
25秒前
科研通AI2S应助科研通管家采纳,获得10
25秒前
星辰大海应助科研通管家采纳,获得10
25秒前
Ava应助科研通管家采纳,获得10
25秒前
25秒前
27秒前
dxwy应助风萧萧采纳,获得10
28秒前
孟长歌发布了新的文献求助10
29秒前
科目三应助医小邦采纳,获得10
29秒前
开朗的之卉完成签到,获得积分10
31秒前
33秒前
Cc完成签到,获得积分10
34秒前
孟长歌完成签到,获得积分10
34秒前
zhang发布了新的文献求助10
37秒前
快不了完成签到,获得积分10
37秒前
37秒前
ccciii发布了新的文献求助10
38秒前
搬砖美少女完成签到,获得积分10
40秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143739
求助须知:如何正确求助?哪些是违规求助? 2795236
关于积分的说明 7813804
捐赠科研通 2451222
什么是DOI,文献DOI怎么找? 1304353
科研通“疑难数据库(出版商)”最低求助积分说明 627221
版权声明 601400