A ChatGPT-MATLAB framework for numerical modeling in geotechnical engineering applications

正确性 语法 过程(计算) MATLAB语言 领域(数学) 程序设计语言 编码(集合论) 软件工程 计算机科学 人工智能 数学 集合(抽象数据类型) 纯数学
作者
Daehyun Kim,Tae-Gu Kim,Y. Kim,Yong‐Hoon Byun,Tae Sup Yun
出处
期刊:Computers and Geotechnics [Elsevier]
卷期号:169: 106237-106237 被引量:2
标识
DOI:10.1016/j.compgeo.2024.106237
摘要

ChatGPT has recently emerged as a representative of Large Language Models (LLMs) that have brought evolutionary changes to our society, and the effectiveness of ChatGPT in various applications has been increasingly reported. This study aimed to explore the potential of employing programming performance driven by ChatGPT responses to conversational prompts in the field of geotechnical engineering. The tested examples included the analysis of seepage flow and slope stability, and the image processing of X-ray computed tomographic image for partially saturated sand. For each case, the prompt was initially fed by a narrative explanation of the problem attributes such as geometry, initial conditions, and boundary conditions to generate the MATLAB code that was in turn executed to evaluate the correctness and functionality. Any errors and unanticipated results were further refined by additional prompts until the correct outcome was achieved. ChatGPT was able to generate the numerical code at a considerable level, demonstrating creditable awareness of the refining process, when meticulous prompts were provided based on a comprehensive understanding of given problems. While ChatGPT may not be able to replace the entire process of programming, it can help minimize sloppy syntax errors and assist in designing a basic framework for logical programming.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
猪皮king完成签到,获得积分10
1秒前
李爱国应助baby的跑男采纳,获得10
1秒前
外卖到了完成签到,获得积分10
5秒前
7秒前
7秒前
鸡蛋鸭蛋荷包蛋完成签到,获得积分10
8秒前
健明完成签到,获得积分10
9秒前
萍萍完成签到 ,获得积分10
9秒前
9秒前
10秒前
JamesPei应助小小果妈采纳,获得10
10秒前
春华秋实发布了新的文献求助10
11秒前
12秒前
12秒前
健明发布了新的文献求助10
12秒前
12秒前
13秒前
13秒前
CXLGE发布了新的文献求助10
13秒前
14秒前
Akim应助yun采纳,获得10
15秒前
叉叉发布了新的文献求助10
16秒前
XXDD小吴发布了新的文献求助10
17秒前
喜欢发布了新的文献求助30
18秒前
20秒前
阿宝完成签到,获得积分0
21秒前
努力搬砖毕业完成签到 ,获得积分10
22秒前
22秒前
24秒前
叉叉完成签到,获得积分20
24秒前
27秒前
27秒前
qingxu发布了新的文献求助10
27秒前
NexusExplorer应助春华秋实采纳,获得10
28秒前
29秒前
榴莲发布了新的文献求助30
30秒前
祁灵枫完成签到,获得积分10
30秒前
Gavin发布了新的文献求助10
32秒前
韩无忧发布了新的文献求助10
33秒前
azw完成签到,获得积分10
36秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136141
求助须知:如何正确求助?哪些是违规求助? 2787040
关于积分的说明 7780388
捐赠科研通 2443192
什么是DOI,文献DOI怎么找? 1298921
科研通“疑难数据库(出版商)”最低求助积分说明 625294
版权声明 600870