Punished for Success? A Natural Experiment of Displaying Clinical Hospital Quality on Review Platforms

质量(理念) 自然(考古学) 计算机科学 自然实验 数据科学 医学 历史 哲学 考古 认识论 病理
作者
Lianlian Jiang,Jinghui Hou,Xiao Ma,Paul A. Pavlou
出处
期刊:Information Systems Research [Institute for Operations Research and the Management Sciences]
标识
DOI:10.1287/isre.2021.0630
摘要

The healthcare market struggles with information asymmetry, limiting patients’ ability to make informed hospital choices. Aiming to bridge this gap, review platforms like Yelp have begun displaying hospitals’ clinical quality data alongside consumer reviews. However, our research uncovers that Yelp’s introduction of maternity care clinical quality measures unexpectedly resulted in lower subsequent Yelp ratings for high-quality hospitals with insufficient staffing. Employing precise foot traffic data and transfer deep learning, we discovered that high-quality, yet understaffed, hospitals experienced a surge in patient volume, which strained their resources and diminished patient satisfaction, leading to negative reviews. This finding has significant implications, signaling the unintended consequences of revealing clinical quality measures, including potential financial losses for hospitals because of reduced federal funding. This research not only contributes to our understanding the dynamics of patient satisfaction but also, offers actionable insights for high-quality hospitals to mitigate the negative impacts of unexpected visibility on review platforms. Our research underscores the importance for patients to discern between objective clinical quality measures and self-reported subjective ratings in their decision-making process. This research applies machine learning and transfer deep learning techniques to healthcare analytics, offering a deeper understanding of the interplay between information disclosure, online reviews, patient satisfaction, and hospital management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
可爱的函函应助秋夜白采纳,获得10
3秒前
山阴路没有夏天完成签到,获得积分10
3秒前
晓阳完成签到,获得积分10
3秒前
飞花影完成签到,获得积分10
4秒前
韩邹光完成签到,获得积分10
4秒前
子车茗应助She采纳,获得10
6秒前
子车茗应助She采纳,获得10
6秒前
mind发布了新的文献求助10
7秒前
vn完成签到,获得积分10
8秒前
8秒前
万能图书馆应助Liu采纳,获得10
9秒前
十元完成签到,获得积分10
12秒前
羊羊完成签到 ,获得积分10
14秒前
15秒前
rxx发布了新的文献求助10
15秒前
16秒前
快帮我找找完成签到,获得积分10
17秒前
18秒前
cl完成签到 ,获得积分10
19秒前
爱国完成签到,获得积分10
19秒前
赘婿应助某宁采纳,获得10
19秒前
稻草人完成签到 ,获得积分10
20秒前
yiyi完成签到 ,获得积分10
20秒前
漫步云端发布了新的文献求助10
20秒前
22秒前
李爱国应助义气的雨旋采纳,获得10
22秒前
闪闪梦曼发布了新的文献求助10
22秒前
25秒前
25秒前
搜集达人应助bobo采纳,获得10
26秒前
漫步云端完成签到,获得积分10
28秒前
秋夜白发布了新的文献求助10
28秒前
29秒前
哈哈哈发布了新的文献求助30
31秒前
Miss完成签到,获得积分10
31秒前
搜集达人应助荣枫采纳,获得10
32秒前
sss发布了新的文献求助10
32秒前
高贵逍遥完成签到 ,获得积分10
34秒前
萌新完成签到,获得积分10
34秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3163383
求助须知:如何正确求助?哪些是违规求助? 2814219
关于积分的说明 7903906
捐赠科研通 2473789
什么是DOI,文献DOI怎么找? 1317077
科研通“疑难数据库(出版商)”最低求助积分说明 631615
版权声明 602187