Self-supervised learning for RGB-D object tracking

人工智能 RGB颜色模型 计算机科学 计算机视觉 跟踪(教育) BitTorrent跟踪器 眼动 骨干网 监督学习 人工神经网络 心理学 教育学 计算机网络
作者
Xuefeng Zhu,Tianyang Xu,Sara Atito,Muhammad Awais,Xiao‐Jun Wu,Zhenhua Feng,Josef Kittler
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:155: 110543-110543 被引量:2
标识
DOI:10.1016/j.patcog.2024.110543
摘要

Recently, there has been a growing interest in RGB-D object tracking thanks to its promising performance achieved by combining visual information with auxiliary depth cues. However, the limited volume of annotated RGB-D tracking data for offline training has hindered the development of a dedicated end-to-end RGB-D tracker design. Consequently, the current state-of-the-art RGB-D trackers mainly rely on the visual branch to support the appearance modelling, with the depth map utilised for elementary information fusion or failure reasoning of online tracking. Despite the achieved progress, the current paradigms for RGB-D tracking have not fully harnessed the inherent potential of depth information, nor fully exploited the synergy of vision-depth information. Considering the availability of ample unlabelled RGB-D data and the advancement in self-supervised learning, we address the problem of self-supervised learning for RGB-D object tracking. Specifically, an RGB-D backbone network is trained on unlabelled RGB-D datasets using masked image modelling. To train the network, the masking mechanism creates a selective occlusion of the input visible image to force the corresponding aligned depth map to help with discerning and learning vision-depth cues for the reconstruction of the masked visible image. As a result, the pre-trained backbone network is capable of cooperating with crucial visual and depth features of the diverse objects and background in the RGB-D image. The intermediate RGB-D features output by the pre-trained network can effectively be used for object tracking. We thus embed the pre-trained RGB-D network into a transformer-based tracking framework for stable tracking. Comprehensive experiments and the analysis of the results obtained on several RGB-D tracking datasets demonstrate the effectiveness and superiority of the proposed RGB-D self-supervised learning framework and the following tracking approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
光亮语梦完成签到 ,获得积分10
2秒前
qwe完成签到,获得积分10
3秒前
lp发布了新的文献求助10
3秒前
3秒前
4秒前
朱老二发布了新的文献求助20
4秒前
潇洒一曲完成签到,获得积分10
4秒前
愉快谷芹发布了新的文献求助10
4秒前
传奇3应助star丶采纳,获得10
5秒前
共享精神应助berg采纳,获得10
5秒前
科研通AI5应助小幻螺采纳,获得10
5秒前
务实砖头发布了新的文献求助10
5秒前
学习发布了新的文献求助10
6秒前
Q123ba叭发布了新的文献求助10
6秒前
忧虑的向日葵完成签到,获得积分10
6秒前
goldfish发布了新的文献求助10
7秒前
7秒前
8秒前
9秒前
nnnn完成签到,获得积分10
9秒前
123发布了新的文献求助10
9秒前
靓丽衫完成签到 ,获得积分10
10秒前
11秒前
12发布了新的文献求助10
12秒前
Lily发布了新的文献求助10
12秒前
12秒前
14秒前
14秒前
14秒前
14秒前
SSS发布了新的文献求助10
15秒前
15秒前
小幻螺完成签到,获得积分20
15秒前
维多利亚完成签到,获得积分10
15秒前
武广敏发布了新的文献求助10
16秒前
郑娟完成签到,获得积分10
16秒前
goldfish完成签到,获得积分10
17秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Animal Physiology 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3745401
求助须知:如何正确求助?哪些是违规求助? 3288352
关于积分的说明 10058409
捐赠科研通 3004588
什么是DOI,文献DOI怎么找? 1649669
邀请新用户注册赠送积分活动 785499
科研通“疑难数据库(出版商)”最低求助积分说明 751117