Transethosomes: Cutting edge approach for drug permeation enhancement in transdermal drug delivery system

透皮 药物输送 药品 药理学 渗透 渗透(战争) 化学 Zeta电位 生物医学工程 纳米技术 医学 材料科学 生物化学 纳米颗粒 工程类 运筹学
作者
Bhabani Shankar Nayak,Biswaranjan Mohanty,Bibaswan Mishra,Harekrishna Roy,Sisir Nandi
出处
期刊:Chemical Biology & Drug Design [Wiley]
卷期号:102 (3): 653-667 被引量:9
标识
DOI:10.1111/cbdd.14254
摘要

Abstract The skin is a major route of drug administration. Despite the high surface area of the skin, drug delivery via the skin route is problematic due to its physiological obstacles. The formulation scientist has developed a vesicular system to enhance the skin's absorption of bioactive substances. Among numerous vesicular systems, concept of transethosomes (TEs) introduced in 2012 are being tested for drug delivery to the dermis. When transferosomes and ethosomes interact, TEs are produced. It consists of water, ethanol, phospholipids, and an edge activator. Ethanol and the edge activator increase the absorption of medication through the skin. In the presence of ethanol and an edge activator, skin permeability can increase. The advantages of TEs include increased patient compliance, bypassing first‐pass metabolism, including non‐toxic raw components, being a noninvasive method of drug delivery, being more stable, biocompatible, biodegradable, and administered in semisolid form. TEs can be produced through the use of hot, cold, mechanical dispersion, and conventional techniques. The morphology, shape, size, zeta potential, drug loading efficiency, vesicle yield, biophysical interactions, and stability of TEs define them. Recent studies reported successful transdermal distribution of antifungal, antiviral, anti‐inflammatory, and cardiovascular bioactive while using ethosomes with significant deeper penetration in skin. The review extensively discussed various claims on TEs developed by researchers, patents, and marketed ethosomes. However, till today no patens being granted on TEs. There are still lingering difficulties related to ethanol‐based TEs that require substantial research to fix.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
三水完成签到,获得积分10
刚刚
xialuoke完成签到,获得积分10
2秒前
爆米花应助717采纳,获得10
2秒前
gcc应助Ben采纳,获得10
3秒前
科研通AI2S应助abc采纳,获得10
4秒前
小盆呐发布了新的文献求助10
4秒前
4秒前
Aurora完成签到,获得积分10
4秒前
受伤雁荷发布了新的文献求助10
5秒前
碧蓝的海豚完成签到,获得积分10
5秒前
chen发布了新的文献求助10
5秒前
ding应助无限的数据线采纳,获得10
5秒前
闪闪完成签到,获得积分10
5秒前
青原完成签到 ,获得积分10
5秒前
lalala发布了新的文献求助20
6秒前
6秒前
7秒前
慕青应助paojiao不辣采纳,获得10
7秒前
7秒前
科研通AI5应助yaeshin采纳,获得10
8秒前
打打应助reck采纳,获得30
8秒前
8秒前
平常幼菱完成签到,获得积分10
9秒前
研友_Zlv6lL完成签到 ,获得积分10
9秒前
10秒前
10秒前
善学以致用应助受伤雁荷采纳,获得10
11秒前
香蕉觅云应助hhhhhhh采纳,获得10
11秒前
11秒前
12秒前
研友_Zlv6lL关注了科研通微信公众号
12秒前
汉堡包应助YXHTCM采纳,获得10
12秒前
123发布了新的文献求助10
13秒前
laryc发布了新的文献求助10
13秒前
冬狩完成签到,获得积分10
13秒前
13秒前
虞丹萱完成签到,获得积分10
14秒前
瘦瘦绮完成签到 ,获得积分10
14秒前
lalala发布了新的文献求助10
14秒前
鹿鸣完成签到 ,获得积分10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 710
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3564116
求助须知:如何正确求助?哪些是违规求助? 3137325
关于积分的说明 9421827
捐赠科研通 2837701
什么是DOI,文献DOI怎么找? 1559976
邀请新用户注册赠送积分活动 729224
科研通“疑难数据库(出版商)”最低求助积分说明 717246